logL.joint.GRW: Log-likelihoods for evolutionary models (joint parameterization)
Description
Returns log-likelihood for general random walk (logL.joint.GRW), unbiased random walk (logL.joint.URW), stasis (logL.joint.Stasis) and OU (logL.joint.OU) models.
The log-likelihood of the parameter estimates (p), given the data (x).
Warning
Because these functions parameterize the models differently, their log-likelihoods are not comparable to those that do not use the joint parameterization.
Details
For the general random walk, p = c(anc, mstep, vstep); for an unbiased random walk, p = c(anc, vstep); for the stasis model, p = c(theta, omega), and for the OU model p = c(anc, vstep, theta, alpha). In general, users will not be access these functions directly, but instead use the optimization functions, which use these functions to find the best-supported parameter values.
References
Hunt, G. 2006. Fitting and comparing models of phyletic evolution: random walks and beyond. Paleobiology32:578--601.
Hunt, G., M. Bell & M. Travis. 2008. Evolution towards a new adaptive optimum: phenotypic evolution in a fossil stickleback lineage. Evolution62:700-710.
x<- sim.GRW(ns=20, ms=0, vs=1)
L1<- logL.joint.GRW(p=c(0,0,1), x) # actual parametersL2<- logL.joint.GRW(p=c(0,10,1), x) # should be a bad guesscat(L1, L2, "")