fitGpunc(y, ng = 2, minb = 5, pool = TRUE, oshare = TRUE, method=c('AD', 'Joint'), silent = FALSE, hess=FALSE, ...)
opt.punc(y, gg, cl = list(fnscale = -1), pool = TRUE, meth = "L-BFGS-B", hess = FALSE, oshare)
opt.joint.punc(y, gg, cl=list(fnscale=-1), pool=TRUE, meth="L-BFGS-B", hess=FALSE, oshare)
logL.punc(p, y, gg)
logL.punc.omega(p, y, gg)
logL.joint.punc(p, y, gg)
logL.joint.punc.omega(p, y, gg)
paleoTS
objectTRUE
, the same variance (omega
) is assumed across all segments. If FALSE
, separate variances are assumd for each segmentTRUE
, less information is printed to the screen as the model is fitTRUE
, standard errors are computed from the Hessian matrixopt.punc
optim
optim
p
),
assuming that the periods of Stasis have the same variance (logL.punc.omega
) or different variances (logL.punc
).
Functions fitGpunc
and opt.punc
return a list with the following elements:optim
optim
optim
hess = TRUE
)optim
fitGpunc
also returns the following elements:GG
corresponds to the elements of all.logl
fitGpunc
, which will calls the other functions in order to find the best parameter
estimates and shift points for the segments.sim.punc
, opt.GRW
, fit.sgs
x<- sim.punc(theta=c(0,5), ns=c(20,20), omega=c(0.5,0.5), vp=c(0.2,0.2))
w<- fitGpunc(x, ng=2, minb=7, pool=TRUE, oshare=TRUE)
print (w$parameters)
## plot using modelFit argument to show the solution
plot(x, modelFit=w)
Run the code above in your browser using DataLab