The log-likelihood of the parameter estimates (p), given the data (y).
Details
For the general random walk, p = c(mstep, vstep); for an unbiased random walk, p = vstep; for the stasis model, p = c(theta, omega). In general, users will not be access these functions directly, but instead use the optimization functions, which use these functions to find the best-supported parameter values.
References
Hunt, G. 2006. Fitting and comparing models of phyletic evolution: random walks and beyond. Paleobiology 32:578--601.
# NOT RUN {y<- sim.GRW(20, 0, 1)
L1 <- logL.GRW(p=c(0,1), y) # actual parametersL2 <- logL.GRW(p=c(10,10), y) # should be a bad guesscat (L1, L2, "\n")
# }