Learn R Programming

paleoTS (version 0.6.2)

fitSimple: Fit simple models of trait evolution

Description

Fit simple models of trait evolution

Usage

fitSimple(
  y,
  model = c("GRW", "URW", "Stasis", "StrictStasis", "OU", "ACDC", "covTrack"),
  method = c("Joint", "AD", "SSM"),
  pool = TRUE,
  z = NULL,
  hess = FALSE
)

Value

a paleoTSfit object with the model fitting results

Arguments

y

a paleoTS object

model

the model to be fit, one of "GRW", "URW", "Stasis", "OU", "ACDC", "covTrack"

method

parameterization to use: Joint, AD or SSM; see Details

pool

if TRUE, sample variances are substituted with their pooled estimate

z

a vector of a covariate, used only for the "covTrack" model

hess

if TRUE, standard errors computed from the Hessian matrix are returned

Details

This is a convenience function that calls the specific individual functions for each model and parameterization, such as opt.GRW and opt.joint.GRW. The models that this function can fit are:

  • GRW: General Random Walk. Under this model, evolutionary changes, or "steps" are drawn from a distribution with a mean of mstep and variance of vstep. mstep determines directionality and vstep determines volatility (Hunt, 2006).

  • URW: Unbiased Random Walk. Same as GRW with mstep = 0, and thus evolution is non-directional. For a URW, vstep is the rate parameter.

  • Stasis: This parameterization follows Sheets & Mitchell (2001), with a constant mean theta and variance omega (equivalent to white noise).

  • Strict Stasis: Same as Stasis with omega = 0, indicating no real evolutionary differences; all observed variation is sampling error (Hunt et al. 2015).

  • OU: Ornstein-Uhlenbeck model (Hunt et al. 2008). This model is that of a population ascending a nearby peak in the adaptive landscape. The optimal trait value is theta, alpha indicates the strength of attraction to that peak (= strength of stabilizing selection around theta), vstep measures the random walk component (from genetic drift) and anc is the trait value at the start of the sequence.

  • ACDC: Accelerating or decelerating evolution model (Blomberg et al. 2003). This model is that of a population undergoing a random walk with a step variance that increases or decreases over time. The initial step variance is vstep0, and the parameter r controls its rate of increase (if positive) or decrease (if negative) over time. When r < 0, the is equivalent to the "Early burst" model of Harmon et al.

  • covTrack: Covariate-tracking (Hunt et al. 2010). The trait tracks a covariate with slope b1, consistent with an adaptive response. evar is the residual variance, and, under method = "Joint", b0 is the intercept of the relationship between trait and covariate. model.

References

Hunt, G. 2006. Fitting and comparing models of phyletic evolution: random walks and beyond. Paleobiology 32(4): 578-601.
Hunt, G. 2008. Evolutionary patterns within fossil lineages: model-based assessment of modes, rates, punctuations and process. p. 117-131 In From Evolution to Geobiology: Research Questions Driving Paleontology at the Start of a New Century. Bambach, R. and P. Kelley (Eds).
Hunt, G., M. A. Bell and M. P. Travis. 2008. Evolution toward a new adaptive optimum: phenotypic evolution in a fossil stickleback lineage. Evolution 62(3): 700-710.
Sheets, H. D., and C. Mitchell. 2010. Why the null matters: statistical tests, random walks and evolution. Genetica 112– 113:105–125.
Blomberg, S. P., T. Garland, and A. R. Ives. 2003. Testing for phylogenetic signal in comparative data: behavioural traits are more labile. Evolution 57(4):717-745.
Harmon, L. J. et al. 2010. Early bursts of body size and shape evolution are rare in comparative data. Evolution 64(8):2385-2396.

See Also

opt.GRW, opt.joint.GRW, opt.joint.OU, opt.covTrack

Examples

Run this code
y <- sim.Stasis(ns = 20, omega = 2)
w1 <- fitSimple(y, model = "GRW")
w2 <- fitSimple(y, model = "URW")
w3 <- fitSimple(y, model = "Stasis")
compareModels(w1, w2, w3)

Run the code above in your browser using DataLab