##Simulate some fossil ranges with simFossilTaxa()
set.seed(444)
taxa<-simFossilTaxa(p=0.1,q=0.1,nruns=1,mintaxa=20,maxtaxa=30,maxtime=1000,nExtant=0)
#simulate a fossil record with imperfect sampling with sampleRanges()
rangesCont<-sampleRanges(taxa,r=0.5)
#now, get an estimate of the sampling rate (we set it to 0.5 above)
(SRres1<-getSampRateCont(rangesCont))
#that's all the results...
sRate<-SRres1$pars[2]
print(sRate) #estimates that sRate=~0.4 (not too bad...)
#this data was simulated under homogenous sampling rates, extinction rates
#if we fit a model with random groups and allow for multiple timebins, AIC should be higher (less informative)
randomgroup<-sample(1:2,nrow(rangesCont),replace=TRUE)
SRres2<-getSampRateCont(rangesCont,grp1=randomgroup)
SRres3<-getSampRateCont(rangesCont,n_tbins=2)
SRres4<-getSampRateCont(rangesCont,n_tbins=3,grp1=randomgroup)
print(c(SRres1$AICc,SRres2$AICc,SRres3$AICc,SRres4$AICc))
#and we can see the most simple model has the lowest AICc (most informative model)
Run the code above in your browser using DataLab