##Simulate some fossil ranges with simFossilTaxa()
##Simulate some fossil ranges with simFossilTaxa()
set.seed(444)
taxa<-simFossilTaxa(p=0.1,q=0.1,nruns=1,mintaxa=20,maxtaxa=30,maxtime=1000,nExtant=0)
#let's see what the 'true' diversity curve looks like in this case
#plot the FADs and LADs with taxicDivCont()
taxicDivCont(taxa[,3:4])
#simulate a fossil record with imperfect sampling with sampleRanges()
rangesCont<-sampleRanges(taxa,r=0.5)
#plot the diversity curve based on the sampled ranges
layout(matrix(1:2,,2))
taxicDivCont(rangesCont)
#Now let's use binTimeData() to bin in intervals of 1 time unit
rangesDisc<-binTimeData(rangesCont,int.length=1)
#plot with taxicDivDisc()
taxicDivDisc(rangesDisc)
#compare to the continuous time diversity curve
#taxa2phylo assumes we know speciation events perfectly... what if we don't?
#first, let's use taxa2cladogram() to get the 'ideal' cladogram of the taxa
cladogram<-taxa2cladogram(taxa,plot=TRUE)
#Now let's try timePaleoPhy() using the continuous range data
ttree<-timePaleoPhy(cladogram,rangesCont,type="basic",plot=TRUE)
#plot diversity curve
phyloDiv(ttree,drop.ZLB=TRUE)
#that tree lacked the terminal parts of ranges (tips stops at the taxon FADs)
#let's add those terminal ranges back on with add.term
ttree<-timePaleoPhy(cladogram,rangesCont,type="basic",add.term=TRUE,plot=TRUE)
#plot diversity curve
phyloDiv(ttree)
Run the code above in your browser using DataLab