witwit.model performs an Double Within Tables
Correspondence Analysis.
Modification of witwit.coa of ade4 to allow Intra Block Model and divers
weightswitwit.model(dudi, row.blocks, col.blocks, pfil = dudi$lw, pcol = dudi$cw,
model = "C", weight = "coa", scannf = TRUE, nf = 2,eps=1e-15,iter=100)
## S3 method for class 'wwmodel':
summary(object, \dots)
## S3 method for class 'wwmodel':
print(x, \dots)coawwmodelwwmodelwwmodel containing:witwit.coa of ade4, in order to allow diferents
weights and models
in a contingency table with double structure of partition.
If model="C" and weight="coa" the results are the same of witwit.coa.
If model="B" and weight="coa" a Intra-Blocks Correspondence Analysis (IBCA) is buld up
If model="B" and weight="mfa" a Weighted Intra-Blocks Correspondence Analysis (WIBCA)
is build upCazes, P., Chessel, D. and Doledec, S. (1988) L'analyse des correspondances internes d'un tableau partitionne :
son usage en hydrobiologie. Revue de Statistique Appliquee, 36, 39--54.
Pardo, Campo El�as, M�nica B�cue-Bertaut, and Jorge Eduardo Ortiz. (2013). Correspondence Analysis of Contingency Tables with Subpartitions on Rows and Columns. Revista Colombiana de Estad�stica 36.1: 115--144.
data(ardeche)
# change column names
names(ardeche$tab) <- paste(ardeche$sta.fac,ardeche$dat.fac,sep="")
rownames(ardeche$tab) <- # change row names
paste(strtrim(rownames(ardeche$tab),1),substr(rownames(ardeche$tab),4,
length(rownames(ardeche$tab))),sep="")
coa1 <- dudi.coa(ardeche$tab, scannf = FALSE, nf = 4)
ww <- witwit.model(coa1, ardeche$row.blocks, ardeche$col.blocks, scann = FALSE)
ww
plot(ww)
summary(ww)Run the code above in your browser using DataLab