Learn R Programming

param2moment (version 0.1.3)

moment-class: Raw, Central and Standardized Moments, and other Distribution Characteristics

Description

Up to 4th raw \(\text{E}(Y^n)\), central \(\text{E}[(Y-\mu)^n]\) and standardized moments \(\text{E}[(Y-\mu)^n/\sigma^n]\) of the random variable $$Y = (X - \text{location})/\text{scale}$$

Also, the mean, standard deviation, skewness and excess kurtosis of the random variable \(X\).

Arguments

Slots

distname

character scalar, name of distribution, e.g., 'norm' for normal, 'sn' for skew-normal, 'st' for skew-\(t\), and 'GH' for Tukey \(g\)-&-\(h\) distribution, following the nomenclature of dnorm, dsn, dst and QuantileGH::dGH

location,scale

numeric scalars or vectors, location and scale parameters

mu

numeric scalar or vector, 1st raw moment \(\mu = \text{E}(Y)\). Note that the 1st central moment \(\text{E}(Y-\mu)\) and standardized moment \(\text{E}(Y-\mu)/\sigma\) are both 0.

raw2,raw3,raw4

numeric scalars or vectors, 2nd or higher raw moments \(\text{E}(Y^n)\), \(n\geq 2\)

central2,central3,central4

numeric scalars or vectors, 2nd or higher central moments, \(\sigma^2 = \text{E}[(Y-\mu)^2]\) and \(\text{E}[(Y-\mu)^n]\), \(n\geq 3\)

standardized3,standardized4

numeric scalars or vectors, 3rd or higher standardized moments, skewness \(\text{E}[(Y-\mu)^3]/\sigma^3\) and kurtosis \(\text{E}[(Y-\mu)^4]/\sigma^4\). Note that the 2nd standardized moment is 1

Details

For \(Y = (X - \text{location})/\text{scale}\), let \(\mu = \text{E}(Y)\), then, according to Binomial theorem, the 2nd to 4th central moments of \(Y\) are, $$\text{E}[(Y-\mu)^2] = \text{E}(Y^2) - 2\mu \text{E}(Y) + \mu^2 = \text{E}(Y^2) - \mu^2$$ $$\text{E}[(Y-\mu)^3] = \text{E}(Y^3) - 3\mu \text{E}(Y^2) + 3\mu^2 \text{E}(Y) - \mu^3 = \text{E}(Y^3) - 3\mu \text{E}(Y^2) + 2\mu^3$$ $$\text{E}[(Y-\mu)^4] = \text{E}(Y^4) - 4\mu \text{E}(Y^3) + 6\mu^2 \text{E}(Y^2) - 4\mu^3 \text{E}(Y) + \mu^4 = \text{E}(Y^4) - 4\mu \text{E}(Y^3) + 6\mu^2 \text{E}(Y^2) - 3\mu^4$$

The distribution characteristics of \(Y\) are, $$\mu_Y = \mu$$ $$\sigma_Y = \sqrt{\text{E}[(Y-\mu)^2]}$$ $$\text{skewness}_Y = \text{E}[(Y-\mu)^3] / \sigma^3_Y$$ $$\text{kurtosis}_Y = \text{E}[(Y-\mu)^4] / \sigma^4_Y - 3$$

The distribution characteristics of \(X\) are \(\mu_X = \text{location} + \text{scale}\cdot \mu_Y\), \(\sigma_X = \text{scale}\cdot \sigma_Y\), \(\text{skewness}_X = \text{skewness}_Y\), and \(\text{kurtosis}_X = \text{kurtosis}_Y\).