Format CFA/SEM objects from the (b)lavaan package (Rosseel, 2012; Merkle and Rosseel 2018).
# S3 method for lavaan
model_parameters(
model,
ci = 0.95,
standardize = FALSE,
type = c("regression", "correlation", "loading", "defined"),
verbose = TRUE,
...
)
CFA or SEM created by the lavaan::cfa
or lavaan::sem
functions (or from blavaan).
Confidence Interval (CI) level. Default to 0.95 (95%).
Return standardized parameters (standardized coefficients).
Can be TRUE
(or "all"
or "std.all"
) for standardized
estimates based on both the variances of observed and latent variables;
"latent"
(or "std.lv"
) for standardized estimates based
on the variances of the latent variables only; or "no_exogenous"
(or "std.nox"
) for standardized estimates based on both the
variances of observed and latent variables, but not the variances of
exogenous covariates. See lavaan::standardizedsolution
for details.
What type of links to return. Can be "all"
or some of c("regression", "correlation", "loading", "variance", "mean")
.
Toggle warnings and messages.
Arguments passed to or from other methods.
A data frame of indices related to the model's parameters.
Rosseel Y (2012). lavaan: An R Package for Structural Equation Modeling. Journal of Statistical Software, 48(2), 1-36.
Merkle EC , Rosseel Y (2018). blavaan: Bayesian Structural Equation Models via Parameter Expansion. Journal of Statistical Software, 85(4), 1-30. http://www.jstatsoft.org/v85/i04/
# NOT RUN {
library(parameters)
# lavaan -------------------------------------
if (require("lavaan")) {
# Confirmatory Factor Analysis (CFA) ---------
structure <- " visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9 "
model <- lavaan::cfa(structure, data = HolzingerSwineford1939)
model_parameters(model)
model_parameters(model, standardize = TRUE)
# Structural Equation Model (SEM) ------------
structure <- "
# latent variable definitions
ind60 =~ x1 + x2 + x3
dem60 =~ y1 + a*y2 + b*y3 + c*y4
dem65 =~ y5 + a*y6 + b*y7 + c*y8
# regressions
dem60 ~ ind60
dem65 ~ ind60 + dem60
# residual correlations
y1 ~~ y5
y2 ~~ y4 + y6
y3 ~~ y7
y4 ~~ y8
y6 ~~ y8
"
model <- lavaan::sem(structure, data = PoliticalDemocracy)
model_parameters(model)
model_parameters(model, standardize = TRUE)
}
# }
Run the code above in your browser using DataLab