
Last chance! 50% off unlimited learning
Sale ends in
Extract and compute indices and measures to describe parameters of meta-analysis models.
# S3 method for rma
model_parameters(
model,
ci = 0.95,
bootstrap = FALSE,
iterations = 1000,
standardize = NULL,
exponentiate = FALSE,
include_studies = TRUE,
verbose = TRUE,
...
)
Model object.
Confidence Interval (CI) level. Default to 0.95 (95%).
Should estimates be based on bootstrapped model? If TRUE
, then arguments of Bayesian regressions apply (see also bootstrap_parameters()
).
The number of bootstrap replicates. This only apply in the case of bootstrapped frequentist models.
The method used for standardizing the parameters. Can be "refit"
, "posthoc"
, "smart"
, "basic"
, "pseudo"
or NULL
(default) for no standardization. See 'Details' in standardize_parameters
. Note that robust estimation (i.e. robust=TRUE
) of standardized parameters only works when standardize="refit"
.
Logical, indicating whether or not to exponentiate the the coefficients (and related confidence intervals). This is typical for, say, logistic regressions, or more generally speaking: for models with log or logit link. Note: standard errors are also transformed (by multiplying the standard errors with the exponentiated coefficients), to mimic behaviour of other software packages, such as Stata.
Logical, if TRUE
(default), includes parameters
for all studies. Else, only parameters for overall-effects are shown.
Toggle warnings and messages.
Arguments passed to or from other methods. For instance, when bootstrap = TRUE
, arguments like ci_method
are passed down to describe_posterior
.
A data frame of indices related to the model's parameters.
# NOT RUN {
library(parameters)
mydat <<- data.frame(
effectsize = c(-0.393, 0.675, 0.282, -1.398),
stderr = c(0.317, 0.317, 0.13, 0.36)
)
if (require("metafor")) {
model <- rma(yi = effectsize, sei = stderr, method = "REML", data = mydat)
model_parameters(model)
}
# }
# NOT RUN {
# with subgroups
if (require("metafor")) {
data(dat.bcg)
dat <- escalc(
measure = "RR",
ai = tpos,
bi = tneg,
ci = cpos,
di = cneg,
data = dat.bcg
)
dat$alloc <- ifelse(dat$alloc == "random", "random", "other")
model <- rma(yi, vi, mods = ~alloc, data = dat, digits = 3, slab = author)
model_parameters(model)
}
if (require("metaBMA")) {
data(towels)
m <- meta_random(logOR, SE, study, data = towels)
model_parameters(m)
}
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab