Learn R Programming

⚠️There's a newer version (0.22.0) of this package.Take me there.

parameters

Describe and understand your model’s parameters!

parameters’ primary goal is to provide utilities for processing the parameters of various statistical models (see here for a list of supported models). Beyond computing p-values, CIs, Bayesian indices and other measures for a wide variety of models, this package implements features like bootstrapping of parameters and models, feature reduction (feature extraction and variable selection), or tools for data reduction like functions to perform cluster, factor or principal component analysis.

Another important goal of the parameters package is to facilitate and streamline the process of reporting results of statistical models, which includes the easy and intuitive calculation of standardized estimates or robust standard errors and p-values. parameters therefor offers a simple and unified syntax to process a large variety of (model) objects from many different packages.

Installation

Run the following:

install.packages("parameters")
library("parameters")

Documentation

Click on the buttons above to access the package documentation and the easystats blog, and check-out these vignettes:

Contributing and Support

In case you want to file an issue or contribute in another way to the package, please follow this guide. For questions about the functionality, you may either contact us via email or also file an issue.

Features

Model’s parameters description

The model_parameters() function (that can be accessed via the parameters() shortcut) allows you to extract the parameters and their characteristics from various models in a consistent way. It can be considered as a lightweight alternative to broom::tidy(), with some notable differences:

  • The column names of the returned data frame are specific to their content. For instance, the column containing the statistic is named following the statistic name, i.e., t, z, etc., instead of a generic name such as statistic (however, you can get standardized (generic) column names using standardize_names()).
  • It is able to compute or extract indices not available by default, such as p-values, CIs, etc.
  • It includes feature engineering capabilities, including parameters bootstrapping.

Classical Regression Models

model <- lm(Sepal.Width ~ Petal.Length * Species + Petal.Width, data = iris)

# regular model parameters
model_parameters(model)
#> Parameter                           | Coefficient |   SE |         95% CI | t(143) |      p
#> -------------------------------------------------------------------------------------------
#> (Intercept)                         |        2.89 | 0.36 | [ 2.18,  3.60] |   8.01 | < .001
#> Petal.Length                        |        0.26 | 0.25 | [-0.22,  0.75] |   1.07 | 0.287 
#> Species [versicolor]                |       -1.66 | 0.53 | [-2.71, -0.62] |  -3.14 | 0.002 
#> Species [virginica]                 |       -1.92 | 0.59 | [-3.08, -0.76] |  -3.28 | 0.001 
#> Petal.Width                         |        0.62 | 0.14 | [ 0.34,  0.89] |   4.41 | < .001
#> Petal.Length * Species [versicolor] |       -0.09 | 0.26 | [-0.61,  0.42] |  -0.36 | 0.721 
#> Petal.Length * Species [virginica]  |       -0.13 | 0.26 | [-0.64,  0.38] |  -0.50 | 0.618

# standardized parameters
model_parameters(model, standardize = "refit")
#> Parameter                           | Coefficient |   SE |         95% CI | t(143) |      p
#> -------------------------------------------------------------------------------------------
#> (Intercept)                         |        3.59 | 1.30 | [ 1.01,  6.17] |   2.75 | 0.007 
#> Petal.Length                        |        1.07 | 1.00 | [-0.91,  3.04] |   1.07 | 0.287 
#> Species [versicolor]                |       -4.62 | 1.31 | [-7.21, -2.03] |  -3.53 | < .001
#> Species [virginica]                 |       -5.51 | 1.38 | [-8.23, -2.79] |  -4.00 | < .001
#> Petal.Width                         |        1.08 | 0.24 | [ 0.59,  1.56] |   4.41 | < .001
#> Petal.Length * Species [versicolor] |       -0.38 | 1.06 | [-2.48,  1.72] |  -0.36 | 0.721 
#> Petal.Length * Species [virginica]  |       -0.52 | 1.04 | [-2.58,  1.54] |  -0.50 | 0.618

Mixed Models

library(lme4)

model <- lmer(Sepal.Width ~ Petal.Length + (1|Species), data = iris)

# model parameters with CI, df and p-values based on Wald approximation
model_parameters(model)
#> Parameter    | Coefficient |   SE |       95% CI | t(146) |      p
#> ------------------------------------------------------------------
#> (Intercept)  |        2.00 | 0.56 | [0.90, 3.10] |   3.56 | < .001
#> Petal.Length |        0.28 | 0.06 | [0.17, 0.40] |   4.75 | < .001

# model parameters with CI, df and p-values based on Kenward-Roger approximation
model_parameters(model, df_method = "kenward")
#> Parameter    | Coefficient |   SE |       95% CI |    t |     df |      p
#> -------------------------------------------------------------------------
#> (Intercept)  |        2.00 | 0.57 | [0.07, 3.93] | 3.53 |   2.67 | 0.046 
#> Petal.Length |        0.28 | 0.06 | [0.16, 0.40] | 4.58 | 140.98 | < .001

Structural Models

Besides many types of regression models and packages, it also works for other types of models, such as structural models (EFA, CFA, SEM…).

library(psych)

model <- psych::fa(attitude, nfactors = 3)
model_parameters(model)
#> # Rotated loadings from Factor Analysis (oblimin-rotation)
#> 
#> Variable   |   MR1 |   MR2 |   MR3 | Complexity | Uniqueness
#> ------------------------------------------------------------
#> rating     |  0.90 | -0.07 | -0.05 |       1.02 |       0.23
#> complaints |  0.97 | -0.06 |  0.04 |       1.01 |       0.10
#> privileges |  0.44 |  0.25 | -0.05 |       1.64 |       0.65
#> learning   |  0.47 |  0.54 | -0.28 |       2.51 |       0.24
#> raises     |  0.55 |  0.43 |  0.25 |       2.35 |       0.23
#> critical   |  0.16 |  0.17 |  0.48 |       1.46 |       0.67
#> advance    | -0.11 |  0.91 |  0.07 |       1.04 |       0.22
#> 
#> The 3 latent factors (oblimin rotation) accounted for 66.60% of the total variance of the original data (MR1 = 38.19%, MR2 = 22.69%, MR3 = 5.72%).

Variable and parameters selection

select_parameters() can help you quickly select and retain the most relevant predictors using methods tailored for the model type.

library(dplyr)

lm(disp ~ ., data = mtcars) %>% 
  select_parameters() %>% 
  model_parameters()
#> Parameter   | Coefficient |     SE |            95% CI | t(26) |      p
#> -----------------------------------------------------------------------
#> (Intercept) |      141.70 | 125.67 | [-116.62, 400.02] |  1.13 | 0.270 
#> cyl         |       13.14 |   7.90 | [  -3.10,  29.38] |  1.66 | 0.108 
#> hp          |        0.63 |   0.20 | [   0.22,   1.03] |  3.18 | 0.004 
#> wt          |       80.45 |  12.22 | [  55.33, 105.57] |  6.58 | < .001
#> qsec        |      -14.68 |   6.14 | [ -27.31,  -2.05] | -2.39 | 0.024 
#> carb        |      -28.75 |   5.60 | [ -40.28, -17.23] | -5.13 | < .001

Miscellaneous

This packages also contains a lot of other useful functions:

Describe a Distribution

data(iris)
describe_distribution(iris)
#> Variable     | Mean |   SD |  IQR |        Range | Skewness | Kurtosis |   n | n_Missing
#> ----------------------------------------------------------------------------------------
#> Sepal.Length | 5.84 | 0.83 | 1.30 | [4.30, 7.90] |     0.31 |    -0.55 | 150 |         0
#> Sepal.Width  | 3.06 | 0.44 | 0.52 | [2.00, 4.40] |     0.32 |     0.23 | 150 |         0
#> Petal.Length | 3.76 | 1.77 | 3.52 | [1.00, 6.90] |    -0.27 |    -1.40 | 150 |         0
#> Petal.Width  | 1.20 | 0.76 | 1.50 | [0.10, 2.50] |    -0.10 |    -1.34 | 150 |         0

Citation

In order to cite this package, please use the following citation:

  • Lüdecke D, Ben-Shachar M, Patil I, Makowski D (2020). parameters: Extracting, Computing and Exploring the Parameters of Statistical Models using R. Journal of Open Source Software, 5(53), 2445. doi: 10.21105/joss.02445

Corresponding BibTeX entry:

@Article{,
  title = {parameters: Extracting, Computing and Exploring the Parameters of Statistical Models using {R}.},
  volume = {5},
  doi = {10.21105/joss.02445},
  number = {53},
  journal = {Journal of Open Source Software},
  author = {Daniel Lüdecke and Mattan S. Ben-Shachar and Indrajeet Patil and Dominique Makowski},
  year = {2020},
  pages = {2445},
}

Copy Link

Version

Install

install.packages('parameters')

Monthly Downloads

73,695

Version

0.11.0

License

GPL-3

Maintainer

Daniel Lüdecke

Last Published

January 15th, 2021

Functions in parameters (0.11.0)

check_kmo

Kaiser, Meyer, Olkin (KMO) Measure of Sampling Adequacy (MSA) for Factor Analysis
center

Centering (Grand-Mean Centering)
check_multimodal

Check if a distribution is unimodal or multimodal
bootstrap_parameters

Parameters bootstrapping
bootstrap_model

Model bootstrapping
check_clusterstructure

Check suitability of data for clustering
check_sphericity

Bartlett's Test of Sphericity
ci.default

Confidence Intervals (CI)
check_factorstructure

Check suitability of data for Factor Analysis (FA)
cluster_analysis

Compute cluster analysis and return group indices
.factor_to_numeric

Safe transformation from factor/character to numeric
.n_factors_bentler

Bentler and Yuan's Procedure
display.parameters_model

Print tables in different output formats
describe_distribution

Describe a distribution
convert_efa_to_cfa

Conversion between EFA results and CFA structure
format_order

Order (first, second, ...) formatting
data_partition

Partition data into a test and a training set
.factor_to_dummy

Safe transformation from factor/character to numeric
.n_factors_bartlett

Bartlett, Anderson and Lawley Procedures
cluster_discrimination

Compute a linear discriminant analysis on classified cluster groups
.data_frame

help-functions
degrees_of_freedom

Degrees of Freedom (DoF)
.filter_component

for models with zero-inflation component, return required component of model-summary
format_parameters

Parameter names formatting
factor_analysis

Factor Analysis (FA)
model_parameters.Mclust

Parameters from Mixture Models
model_parameters.BFBayesFactor

Parameters from BayesFactor objects
fish

Sample data set
model_parameters.PMCMR

Parameters from Hypothesis Testing
format_p_adjust

Format the name of the p-value adjustment methods
convert_data_to_numeric

Convert data to numeric
check_heterogeneity

Compute group-meaned and de-meaned variables
model_parameters.rma

Parameters from Meta-Analysis
.n_factors_cng

Cattell-Nelson-Gorsuch CNG Indices
model_parameters.data.frame

Parameters from Bayesian Models
model_parameters.PCA

Parameters from Structural Models (PCA, EFA, ...)
model_parameters.befa

Parameters from PCA/FA
get_scores

Get Scores from Principal Component Analysis (PCA)
model_parameters.DirichletRegModel

Parameters from multinomial or cumulative link models
model_parameters.averaging

Parameters from special models
p_value.poissonmfx

p-values for Marginal Effects Models
p_value.zcpglm

p-values for Models with Zero-Inflation
model_parameters.htest

Parameters from hypothesis tests
random_parameters

Summary information from random effects
model_parameters.t1way

Parameters from WRS2 objects
model_parameters.aov

Parameters from ANOVAs
model_parameters

Model Parameters
model_parameters.cpglmm

Parameters from Mixed Models
.recode_to_zero

Recode a variable so its lowest value is beginning with zero
n_clusters

Number of clusters to extract
n_factors

Number of components/factors to retain in PCA/FA
print.parameters_model

Print model parameters
.compact_character

remove empty string from character
.n_factors_mreg

Multiple Regression Procedure
.compact_list

remove NULL elements from lists
equivalence_test.lm

Equivalence test
model_parameters.zcpglm

Parameters from Zero-Inflated Models
qol_cancer

Sample data set
ci_betwithin

Between-within approximation for SEs, CIs and p-values
reduce_parameters

Dimensionality reduction (DR) / Features Reduction
reshape_loadings

Reshape loadings between wide/long formats
p_value

p-values
p_value.cpglmm

p-values for Mixed Models
select_parameters

Automated selection of model parameters
.find_most_common

Find most common occurence
ci_kenward

Kenward-Roger approximation for SEs, CIs and p-values
smoothness

Quantify the smoothness of a vector
skewness

Compute Skewness and (Excess) Kurtosis
pool_parameters

Pool Model Parameters
.n_factors_scree

Non Graphical Cattell's Scree Test
ci_ml1

"m-l-1" approximation for SEs, CIs and p-values
simulate_model

Simulated draws from model coefficients
ci_satterthwaite

Satterthwaite approximation for SEs, CIs and p-values
model_parameters.mira

Parameters from multiply imputed repeated analyses
.n_factors_sescree

Standard Error Scree and Coefficient of Determination Procedures
.flatten_list

Flatten a list
model_parameters.cgam

Parameters from Generalized Additive (Mixed) Models
model_parameters.default

Parameters from (General) Linear Models
simulate_parameters.glmmTMB

Simulate Model Parameters
model_parameters.kmeans

Parameters from Cluster Models (k-means, ...)
model_parameters.lavaan

Parameters from CFA/SEM models
principal_components

Principal Component Analysis (PCA)
ci_wald

Wald-test approximation for CIs and p-values
p_value.BFBayesFactor

p-values for Bayesian Models
parameters_type

Type of model parameters
p_value.DirichletRegModel

p-values for Models with Special Components
reexports

Objects exported from other packages
rescale_weights

Rescale design weights for multilevel analysis
standard_error

Standard Errors
standard_error_robust

Robust estimation