Learn R Programming

parameters (version 0.19.0)

model_parameters.rma: Parameters from Meta-Analysis

Description

Extract and compute indices and measures to describe parameters of meta-analysis models.

Usage

# S3 method for rma
model_parameters(
  model,
  ci = 0.95,
  bootstrap = FALSE,
  iterations = 1000,
  standardize = NULL,
  exponentiate = FALSE,
  include_studies = TRUE,
  verbose = TRUE,
  ...
)

Value

A data frame of indices related to the model's parameters.

Arguments

model

Model object.

ci

Confidence Interval (CI) level. Default to 0.95 (95%).

bootstrap

Should estimates be based on bootstrapped model? If TRUE, then arguments of Bayesian regressions apply (see also bootstrap_parameters()).

iterations

The number of bootstrap replicates. This only apply in the case of bootstrapped frequentist models.

standardize

The method used for standardizing the parameters. Can be NULL (default; no standardization), "refit" (for re-fitting the model on standardized data) or one of "basic", "posthoc", "smart", "pseudo". See 'Details' in standardize_parameters(). Importantly:

  • The "refit" method does not standardize categorical predictors (i.e. factors), which may be a different behaviour compared to other R packages (such as lm.beta) or other software packages (like SPSS). to mimic such behaviours, either use standardize="basic" or standardize the data with datawizard::standardize(force=TRUE) before fitting the model.

  • For mixed models, when using methods other than "refit", only the fixed effects will be standardized.

  • Robust estimation (i.e., vcov set to a value other than NULL) of standardized parameters only works when standardize="refit".

exponentiate

Logical, indicating whether or not to exponentiate the coefficients (and related confidence intervals). This is typical for logistic regression, or more generally speaking, for models with log or logit links. It is also recommended to use exponentiate = TRUE for models with log-transformed response values. Note: Delta-method standard errors are also computed (by multiplying the standard errors by the transformed coefficients). This is to mimic behaviour of other software packages, such as Stata, but these standard errors poorly estimate uncertainty for the transformed coefficient. The transformed confidence interval more clearly captures this uncertainty. For compare_parameters(), exponentiate = "nongaussian" will only exponentiate coefficients from non-Gaussian families.

include_studies

Logical, if TRUE (default), includes parameters for all studies. Else, only parameters for overall-effects are shown.

verbose

Toggle warnings and messages.

...

Arguments passed to or from other methods. For instance, when bootstrap = TRUE, arguments like type or parallel are passed down to bootstrap_model().

Examples

Run this code
library(parameters)
mydat <<- data.frame(
  effectsize = c(-0.393, 0.675, 0.282, -1.398),
  stderr = c(0.317, 0.317, 0.13, 0.36)
)
if (require("metafor", quietly = TRUE)) {
  model <- rma(yi = effectsize, sei = stderr, method = "REML", data = mydat)
  model_parameters(model)
}
if (FALSE) {
# with subgroups
if (require("metafor", quietly = TRUE)) {
  data(dat.bcg)
  dat <- escalc(
    measure = "RR",
    ai = tpos,
    bi = tneg,
    ci = cpos,
    di = cneg,
    data = dat.bcg
  )
  dat$alloc <- ifelse(dat$alloc == "random", "random", "other")
  model <- rma(yi, vi, mods = ~alloc, data = dat, digits = 3, slab = author)
  model_parameters(model)
}

if (require("metaBMA", quietly = TRUE)) {
  data(towels)
  m <- meta_random(logOR, SE, study, data = towels)
  model_parameters(m)
}
}

Run the code above in your browser using DataLab