powered by
Extract and compute indices and measures to describe parameters of generalized additive models (GAM(M)s).
# S3 method for gam model_parameters(model, ci = 0.95, bootstrap = FALSE, iterations = 1000, ...)
A gam/gamm model.
Confidence Interval (CI) level. Default to 0.95 (95%).
Should estimates be based on bootstrapped model? If TRUE, then arguments of Bayesian regressions apply (see also parameters_bootstrap()).
TRUE
parameters_bootstrap()
The number of bootstrap replicates. This only apply in the case of bootstrapped frequentist models.
Arguments passed to or from other methods (e.g., to standardize()).
standardize()
A data frame of indices related to the model's parameters.
standardize_names() to rename columns into a consistent, standardized naming scheme.
standardize_names()
# NOT RUN { library(parameters) library(mgcv) dat <- gamSim(1, n = 400, dist = "normal", scale = 2) model <- gam(y ~ s(x0) + s(x1) + s(x2) + s(x3), data = dat) model_parameters(model) # }
Run the code above in your browser using DataLab