Learn R Programming

parboost (version 0.1.4)

friedman2: Benchmark Problem Friedman 2

Description

Dataset taken from mlbench. The inputs are 4 independent variables uniformly distributed over the ranges $$0 \le x1 \le 100$$ $$40 \pi \le x2 \le 560 \pi$$ $$0 \le x3 \le 1$$ $$1 \le x4 \le 11$$ The outputs are created according to the formula $$y = (x1^2 + (x2 x3 - (1/(x2 x4)))^2)^{0.5} + e$$ where e is $N(0,sd)$.

Arguments

format

A data frame with 100 rows and 5 variables

source

http://cran.r-project.org/web/packages/mlbench/index.html

References

Breiman, Leo (1996) Bagging predictors. Machine Learning 24, pages 123-140.

Friedman, Jerome H. (1991) Multivariate adaptive regression splines. The Annals of Statistics 19 (1), pages 1-67.

Friedrich Leisch & Evgenia Dimitriadou (2010). mlbench: Machine Learning Benchmark Problems. R package version 2.1-1.