Learn R Programming

parody (version 1.30.0)

mv.calout.detect: calibrated multivariate outlier detection

Description

interface to a parametric multivariate outlier detection algorithm

Usage

mv.calout.detect(x, k = min(floor((nrow(x) - 1)/2), 100), Ci = C.unstr, lamfun = lams.unstr, alpha = 0.05, method = c("parametric", "rocke", "kosinski.raw", "kosinski.exch")[1], ...)

Arguments

x
data matrix
k
upper bound on number of outliers; defaults to just less than half the sample size
Ci
function computing Ci, the covariance determinant ratio excluding row i. At present, sole option is C.unstr (Caroni and Prescott 1992 Appl Stat).
lamfun
function computing lambda, the critical values for Ci
alpha
false outlier labeling rate
method
string identifying algorithm to use
...
reserved for future use

Value

a list with components
inds
indices of outlying rows
vals
values of outlying rows
k
input parameter k
alpha
input parameter alpha

Details

bushfire is a dataset distributed by Kosinski to illustrate his method.

References

Examples

Run this code
data(tcost)
mv.calout.detect(tcost)
data(bushfire)
mv.calout.detect(bushfire)

Run the code above in your browser using DataLab