Learn R Programming

⚠️There's a newer version (1.1.0) of this package.Take me there.

parsnip (version 0.1.6)

A Common API to Modeling and Analysis Functions

Description

A common interface is provided to allow users to specify a model without having to remember the different argument names across different functions or computational engines (e.g. 'R', 'Spark', 'Stan', etc).

Copy Link

Version

Install

install.packages('parsnip')

Monthly Downloads

49,201

Version

0.1.6

License

MIT + file LICENSE

Issues

Pull Requests

Stars

Forks

Maintainer

Max Kuhn

Last Published

May 27th, 2021

Functions in parsnip (0.1.6)

add_rowindex

Add a column of row numbers to a data frame
C5.0_train

Boosted trees via C5.0
contr_one_hot

Contrast function for one-hot encodings
convert_stan_interval

Convenience function for intervals
control_parsnip

Control the fit function
null_value

Functions required for parsnip-adjacent packages
boost_tree

General Interface for Boosted Trees
check_empty_ellipse

Check to ensure that ellipses are empty
logistic_reg

General Interface for Logistic Regression Models
augment.model_fit

Augment data with predictions
make_call

Make a parsnip call expression
fit.model_spec

Fit a Model Specification to a Dataset
get_model_env

Working with the parsnip model environment
descriptors

Data Set Characteristics Available when Fitting Models
eval_args

Evaluate parsnip model arguments
decision_tree

General Interface for Decision Tree Models
mlp

General Interface for Single Layer Neural Network
linear_reg

General Interface for Linear Regression Models
keras_mlp

Simple interface to MLP models via keras
multi_predict

Model predictions across many sub-models
model_spec

Model Specification Information
model_db

parsnip model specification database
make_classes

Prepend a new class
mars

General Interface for MARS
parsnip_addin

Start an RStudio Addin that can write model specifications
predict_class.model_fit

Other predict methods.
maybe_matrix

Fuzzy conversions
update.boost_tree

Update a model specification
glance.model_fit

Construct a single row summary "glance" of a model, fit, or other object
model_fit

Model Fit Object Information
model_printer

Print helper for model objects
predict.model_fit

Model predictions
min_cols

Execution-time data dimension checks
prepare_data

Prepare data based on parsnip encoding information
rand_forest

General Interface for Random Forest Models
proportional_hazards

General Interface for Proportional Hazards Models
has_multi_predict

Tools for models that predict on sub-models
null_model

General Interface for null models
nullmodel

Fit a simple, non-informative model
set_args

Change elements of a model specification
tidy._LiblineaR

tidy methods for LiblineaR models
rpart_train

Decision trees via rpart
req_pkgs

Determine required packages for a model
nearest_neighbor

General Interface for K-Nearest Neighbor Models
tidy._elnet

tidy methods for glmnet models
multinom_reg

General Interface for Multinomial Regression Models
show_engines

Display currently available engines for a model
show_call

Print the model call
set_engine

Declare a computational engine and specific arguments
tidy.model_fit

Turn a parsnip model object into a tidy tibble
repair_call

Repair a model call object
tidy.nullmodel

Tidy method for null models
svm_poly

General interface for polynomial support vector machines
set_new_model

Tools to Register Models
reexports

Objects exported from other packages
survival_reg

General Interface for Parametric Survival Models
svm_rbf

General interface for radial basis function support vector machines
xgb_train

Boosted trees via xgboost
varying_args.model_spec

Determine varying arguments
varying

A placeholder function for argument values
svm_linear

General interface for linear support vector machines
type_sum.model_spec

Succinct summary of parsnip object
translate

Resolve a Model Specification for a Computational Engine
stan_conf_int

Wrapper for stan confidence intervals
surv_reg

General Interface for Parametric Survival Models