Learn R Programming

⚠️There's a newer version (1.1.0) of this package.Take me there.

parsnip (version 1.0.2)

A Common API to Modeling and Analysis Functions

Description

A common interface is provided to allow users to specify a model without having to remember the different argument names across different functions or computational engines (e.g. 'R', 'Spark', 'Stan', etc).

Copy Link

Version

Install

install.packages('parsnip')

Monthly Downloads

35,023

Version

1.0.2

License

MIT + file LICENSE

Issues

Pull Requests

Stars

Forks

Maintainer

Max Kuhn

Last Published

October 1st, 2022

Functions in parsnip (1.0.2)

contr_one_hot

Contrast function for one-hot encodings
control_parsnip

Control the fit function
autoplot.model_fit

Create a ggplot for a model object
bag_mars

Ensembles of MARS models
bart-internal

Developer functions for predictions via BART models
boost_tree

Boosted trees
ctree_train

A wrapper function for conditional inference tree models
cubist_rules

Cubist rule-based regression models
bart

Bayesian additive regression trees (BART)
details_bag_tree_C5.0

Bagged trees via C5.0
details_bag_tree_rpart

Bagged trees via rpart
convert_stan_interval

Convenience function for intervals
.convert_form_to_xy_fit

Helper functions to convert between formula and matrix interface
descriptors

Data Set Characteristics Available when Fitting Models
decision_tree

Decision trees
case_weights

Using case weights with parsnip
details_bag_mlp_nnet

Bagged neural networks via nnet
details_bag_mars_earth

Bagged MARS via earth
details_C5_rules_C5.0

C5.0 rule-based classification models
details_auto_ml_h2o

Automatic machine learning via h2o
details_cubist_rules_Cubist

Cubist rule-based regression models
details_boost_tree_xgboost

Boosted trees via xgboost
auto_ml

Automatic Machine Learning
augment.model_fit

Augment data with predictions
details_boost_tree_h2o

Boosted trees via h2o
details_boost_tree_lightgbm

Boosted trees via lightgbm
details_bart_dbarts

Bayesian additive regression trees via dbarts
details_boost_tree_C5.0

Boosted trees via C5.0
details_discrim_linear_sparsediscrim

Linear discriminant analysis via regularization
details_discrim_quad_MASS

Quadratic discriminant analysis via MASS
details_discrim_quad_sparsediscrim

Quadratic discriminant analysis via regularization
details_discrim_regularized_klaR

Regularized discriminant analysis via klaR
condense_control

Condense control object into strictly smaller control object
check_empty_ellipse

Check to ensure that ellipses are empty
details_discrim_flexible_earth

Flexible discriminant analysis via earth
details_discrim_linear_sda

Linear discriminant analysis via James-Stein-type shrinkage estimation
details_discrim_linear_mda

Linear discriminant analysis via flexible discriminant analysis
details_decision_tree_C5.0

Decision trees via C5.0
details_decision_tree_partykit

Decision trees via partykit
details_decision_tree_rpart

Decision trees via CART
details_boost_tree_mboost

Boosted trees
details_decision_tree_spark

Decision trees via Spark
details_gen_additive_mod_mgcv

Generalized additive models via mgcv
details_linear_reg_glmnet

Linear regression via glmnet
details_linear_reg_glmer

Linear regression via generalized mixed models
details_linear_reg_brulee

Linear regression via brulee
details_discrim_linear_MASS

Linear discriminant analysis via MASS
details_linear_reg_gls

Linear regression via generalized least squares
details_linear_reg_glm

Linear regression via glm
details_linear_reg_gee

Linear regression via generalized estimating equations (GEE)
details_linear_reg_h2o

Linear regression via h2o
details_logistic_reg_glm

Logistic regression via glm
details_boost_tree_spark

Boosted trees via Spark
details_linear_reg_lme

Linear regression via mixed models
details_linear_reg_lm

Linear regression via lm
details_linear_reg_keras

Linear regression via keras/tensorflow
details_linear_reg_lmer

Linear regression via mixed models
details_logistic_reg_LiblineaR

Logistic regression via LiblineaR
details_linear_reg_stan_glmer

Linear regression via hierarchical Bayesian methods
details_logistic_reg_glmer

Logistic regression via mixed models
details_naive_Bayes_h2o

Naive Bayes models via naivebayes
details_mlp_keras

Multilayer perceptron via keras
details_logistic_reg_keras

Logistic regression via keras
details_mlp_h2o

Multilayer perceptron via h2o
details_logistic_reg_spark

Logistic regression via spark
details_multinom_reg_spark

Multinomial regression via spark
details_linear_reg_spark

Linear regression via spark
details_linear_reg_stan

Linear regression via Bayesian Methods
details_logistic_reg_stan

Logistic regression via stan
details_logistic_reg_stan_glmer

Logistic regression via hierarchical Bayesian methods
details_multinom_reg_glmnet

Multinomial regression via glmnet
details_mlp_brulee

Multilayer perceptron via brulee
details_mars_earth

Multivariate adaptive regression splines (MARS) via earth
details_mlp_nnet

Multilayer perceptron via nnet
details_multinom_reg_h2o

Multinomial regression via h2o
details_poisson_reg_stan_glmer

Poisson regression via hierarchical Bayesian methods
details_naive_Bayes_klaR

Naive Bayes models via klaR
details_poisson_reg_stan

Poisson regression via stan
details_logistic_reg_gee

Logistic regression via generalized estimating equations (GEE)
details_naive_Bayes_naivebayes

Naive Bayes models via naivebayes
details_logistic_reg_brulee

Logistic regression via brulee
details_poisson_reg_gee

Poisson regression via generalized estimating equations (GEE)
details_poisson_reg_glm

Poisson regression via glm
details_poisson_reg_h2o

Poisson regression via h2o
details_rule_fit_xrf

RuleFit models via xrf
details_rule_fit_h2o

RuleFit models via h2o
details_rand_forest_partykit

Random forests via partykit
details_multinom_reg_brulee

Multinomial regression via brulee
details_poisson_reg_zeroinfl

Poisson regression via pscl
details_proportional_hazards_glmnet

Proportional hazards regression
details_rand_forest_randomForest

Random forests via randomForest
details_poisson_reg_hurdle

Poisson regression via pscl
details_svm_linear_LiblineaR

Linear support vector machines (SVMs) via LiblineaR
details_rand_forest_ranger

Random forests via ranger
details_logistic_reg_h2o

Logistic regression via h2o
details_logistic_reg_glmnet

Logistic regression via glmnet
gen_additive_mod

Generalized additive models (GAMs)
details_svm_poly_kernlab

Polynomial support vector machines (SVMs) via kernlab
details_svm_rbf_kernlab

Radial basis function support vector machines (SVMs) via kernlab
doc-tools

Tools for documenting engines
details_svm_linear_kernlab

Linear support vector machines (SVMs) via kernlab
details_survival_reg_flexsurv

Parametric survival regression
details_rand_forest_spark

Random forests via spark
.model_param_name_key

Translate names of model tuning parameters
format-internals

Internal functions that format predictions
get_model_env

Working with the parsnip model environment
details_multinom_reg_keras

Multinomial regression via keras
details_survival_reg_survival

Parametric survival regression
details_poisson_reg_glmer

Poisson regression via mixed models
eval_args

Evaluate parsnip model arguments
mars

Multivariate adaptive regression splines (MARS)
discrim_flexible

Flexible discriminant analysis
extract-parsnip

Extract elements of a parsnip model object
make_classes

Prepend a new class
details_poisson_reg_glmnet

Poisson regression via glmnet
details_multinom_reg_nnet

Multinomial regression via nnet
details_rand_forest_h2o

Random forests via h2o
discrim_quad

Quadratic discriminant analysis
keras_predict_classes

Wrapper for keras class predictions
details_proportional_hazards_survival

Proportional hazards regression
details_pls_mixOmics

Partial least squares via mixOmics
details_nearest_neighbor_kknn

K-nearest neighbors via kknn
knit_engine_docs

Knit engine-specific documentation
discrim_linear

Linear discriminant analysis
nearest_neighbor

K-nearest neighbors
naive_Bayes

Naive Bayes models
details_surv_reg_flexsurv

Parametric survival regression
fit_control

Control the fit function
fit.model_spec

Fit a Model Specification to a Dataset
linear_reg

Linear regression
discrim_regularized

Regularized discriminant analysis
keras_mlp

Simple interface to MLP models via keras
logistic_reg

Logistic regression
list_md_problems

Locate and show errors/warnings in engine-specific documentation
has_multi_predict

Tools for models that predict on sub-models
make_call

Make a parsnip call expression
model_printer

Print helper for model objects
predict_class.model_fit

Other predict methods.
glance.model_fit

Construct a single row summary "glance" of a model, fit, or other object
.check_glmnet_penalty_fit

Helper functions for checking the penalty of glmnet models
details_surv_reg_survival

Parametric survival regression
poisson_reg

Poisson regression models
model_spec

Model Specification Information
pls

Partial least squares (PLS)
parsnip-package

parsnip
tidy.model_fit

Turn a parsnip model object into a tidy tibble
req_pkgs

Determine required packages for a model
required_pkgs.model_spec

Determine required packages for a model
tidy._LiblineaR

tidy methods for LiblineaR models
tidy.nullmodel

Tidy method for null models
tidy._elnet

tidy methods for glmnet models
glm_grouped

Fit a grouped binomial outcome from a data set with case weights
proportional_hazards

Proportional hazards regression
translate

Resolve a Model Specification for a Computational Engine
rand_forest

Random forest
model_fit

Model Fit Object Information
set_tf_seed

Set seed in R and TensorFlow at the same time
check_model_exists

Tools to Register Models
min_cols

Execution-time data dimension checks
mlp

Single layer neural network
model_db

parsnip model specification database
glmnet-details

Technical aspects of the glmnet model
.organize_glmnet_pred

Organize glmnet predictions
type_sum.model_spec

Succinct summary of parsnip object
set_engine

Declare a computational engine and specific arguments
set_args

Change elements of a model specification
show_engines

Display currently available engines for a model
reexports

Objects exported from other packages
show_call

Print the model call
multi_predict

Model predictions across many sub-models
surv_reg

Parametric survival regression
repair_call

Repair a model call object
varying

A placeholder function for argument values
stan_conf_int

Wrapper for stan confidence intervals
update_model_info_file

Save information about models
parsnip_addin

Start an RStudio Addin that can write model specifications
multinom_reg

Multinomial regression
update.bag_mars

Updating a model specification
maybe_matrix

Fuzzy conversions
nullmodel

Fit a simple, non-informative model
rule_fit

RuleFit models
null_model

Null model
max_mtry_formula

Determine largest value of mtry from formula. This function potentially caps the value of mtry based on a formula and data set. This is a safe approach for survival and/or multivariate models.
survival_reg

Parametric survival regression
rpart_train

Decision trees via rpart
svm_poly

Polynomial support vector machines
prepare_data

Prepare data based on parsnip encoding information
xgb_train

Boosted trees via xgboost
predict.model_fit

Model predictions
svm_linear

Linear support vector machines
varying_args.model_spec

Determine varying arguments
svm_rbf

Radial basis function support vector machines
C5_rules

C5.0 rule-based classification models
bag_mlp

Ensembles of neural networks
bag_tree

Ensembles of decision trees
add_rowindex

Add a column of row numbers to a data frame
C5.0_train

Boosted trees via C5.0
null_value

Functions required for parsnip-adjacent packages