Learn R Programming

partitionComparison (version 0.2.5)

normalizedMutualInformation: Normalized Mutual Information

Description

Compute the mutual information (\(MI\)) which is normalized either by the minimum/maximum partition entropy (\(H\)) $$\frac{MI(P, Q)}{\varphi(H(P), H(Q))},\ \varphi \in \{\min, \max\}$$ or the sum $$\frac{2 \cdot MI(P, Q)}{H(P) + H(Q)}$$

Usage

normalizedMutualInformation(p, q, type = c("min", "max", "sum"))

# S4 method for Partition,Partition,character normalizedMutualInformation(p, q, type = c("min", "max", "sum"))

# S4 method for Partition,Partition,missing normalizedMutualInformation(p, q, type = NULL)

Arguments

p

The partition \(P\)

q

The partition \(Q\)

type

One of "min" (default), "max" or "sum"

Methods (by class)

  • p = Partition,q = Partition,type = character: Compute given two partitions

  • p = Partition,q = Partition,type = missing: Compute given two partitions with type="min"

Author

Fabian Ball fabian.ball@kit.edu

References

Kvalseth1987partitionComparison

See Also

mutualInformation, entropy

Examples

Run this code
isTRUE(all.equal(normalizedMutualInformation(
                   new("Partition", c(0, 0, 0, 1, 1)),
                   new("Partition", c(0, 0, 1, 1, 1)), "min"),
                 normalizedMutualInformation(
                   new("Partition", c(0, 0, 0, 1, 1)), 
                   new("Partition", c(0, 0, 1, 1, 1)), "max")
                 ))

Run the code above in your browser using DataLab