powered by
Compute the Lerman index $$\frac{N_{11} - E(N_{11})}{\sqrt{\sigma^2(N_{11})}}$$
lermanIndex(p, q, c = NULL)# S4 method for Partition,Partition,missing lermanIndex(p, q, c = NULL)# S4 method for Partition,Partition,PairCoefficients lermanIndex(p, q, c = NULL)
# S4 method for Partition,Partition,missing lermanIndex(p, q, c = NULL)
# S4 method for Partition,Partition,PairCoefficients lermanIndex(p, q, c = NULL)
The partition \(P\)
The partition \(Q\)
PairCoefficients or NULL
lermanIndex(p = Partition, q = Partition, c = missing): Compute given two partitions
lermanIndex(p = Partition, q = Partition, c = missing)
lermanIndex(p = Partition, q = Partition, c = PairCoefficients): Compute given the partitions and pair coefficients
lermanIndex(p = Partition, q = Partition, c = PairCoefficients)
Fabian Ball fabian.ball@kit.edu
Lerman1988partitionComparison
Hubert1985partitionComparison
Deneud2006partitionComparison
normalizedLermanIndex
isTRUE(all.equal(lermanIndex(new("Partition", c(0, 0, 0, 1, 1)), new("Partition", c(0, 0, 1, 1, 1))), 2/sqrt(21)))
Run the code above in your browser using DataLab