## Not run: ------------------------------------
# # set up 'parallel' cluster
# cls <- makeCluster(2)
# setclsinfo(cls)
# # data prep
# data(prgeng)
# prgeng$occ <- re_code(prgeng$occ)
# prgeng$bs <- as.integer(prgeng$educ == 13)
# prgeng$ms <- as.integer(prgeng$educ == 14)
# prgeng$phd <- as.integer(prgeng$educ == 15)
# prgeng$sex <- prgeng$sex - 1
# pe <- prgeng[,c(1,7,8,9,12,13,14,5)]
# pe$occ <- as.factor(pe$occ) # needed for rpart!
# # go
# distribsplit(cls,'pe')
# library(rpart)
# clusterEvalQ(cls,library(rpart))
# fit <- caclassfit(cls,"rpart(occ ~ .,data=pe)")
# predout <- caclasspred(fit,pe,8,type='class')
# predout$acc # 0.36
#
# stopCluster(cls)
## ---------------------------------------------
Run the code above in your browser using DataLab