## Load data and select the deterministic components.
data("gergnp")
lgergnp <- log(gergnp, base=exp(1))
detcomp <- list(regular=c(0,0,0), seasonal=c(1,0), regvar=0)
## Fit an AR(4) model with intercept and seasonal dummies.
dcar <- list(regular=c(1,0,c(1,2,3)), seasonal=c(0,0), regvar=0)
out.ar <- fit.ar.par(wts=lgergnp, type="AR", detcomp=dcar, p=4)
show(out.ar)
## Fit a PAR(2) model with seasonal intercepts.
out.par <- fit.ar.par(wts=lgergnp, type="PAR", detcomp=detcomp, p=2)
show(out.par)
## Fnextp.test
Fnextp.out <- Fnextp.test(wts=lgergnp, detcomp=detcomp, p=1, type="PAR")
show(Fnextp.out)
## Fpar.test
Fpar.out <- Fpar.test(wts=lgergnp, detcomp=detcomp, p=2)
show(Fpar.out)
## Fsh.test
ar4 <- fit.ar.par(wts=lgergnp, type="AR", p=4, detcomp=detcomp)
Fsh.out <- Fsh.test(res=residuals(ar4@lm.ar), s=frequency(lgergnp))
show(Fsh.out)
## Fit a PIAR(2) model with seasonal intercepts.
out.piar <- fit.piar(wts=lgergnp, detcomp=detcomp, p=2)
show(out.piar)
## Fpari.piar.test
Fpari1.out <- Fpari.piar.test(wts=lgergnp, detcomp=detcomp, p=2, type="PARI1")
show(Fpari1.out)
## Fit a PIAR(2) model with seasonal intercepts.
out.piar <- fit.piar(wts=lgergnp, detcomp=detcomp, p=2)
show(out.piar)
## Test for a single unit root in a PAR(2) model with seasonal intercepts.
out.LR <- LRurpar.test(wts=lgergnp, detcomp=detcomp, p=2)
show(out.LR)
## 24 step-ahead forecasts in a PIAR(2) model.
pred.out <- predictpiar(wts=lgergnp, p=2, hpred=24)
show(pred.out)
Run the code above in your browser using DataLab