sim.mol.data(mol.type = c("gene", "gene.ko", "cpd")[1], id.type = NULL,
species="hsa", discrete = FALSE, nmol = 1000, nexp = 1, rand.seed=100)
pathview
. Default mol.type="gene".
data(gene.idtype.bods); gene.idtype.bods
for
other valid ID types. When mol.type="cpd", check data(cpd.simtypes);
cpd.simtypes
for valid ID types. Default id.type=NULL, then "Entrez" and
"KEGG COMPOUND accession" will be assumed for mol.type = "gene" or
"cpd".
data(gene.idtype.bods); gene.idtype.bods
. When other
species are specified, gene id.type is limited to "KEGG" and "ENTREZ".
nexp
. Vector should be numeric
with molecular IDs as names or it may also be character of molecular
IDs depending on the value of discrete
. Matrix-like data structure has molecules as
rows and samples as columns. Row names should be molecular IDs.This returned data can be used directly as gene.data or cpd.data
input of pathview
main function.
node.map
the node data mapper function.
mol.sum
the auxillary molecular data mapper,
id2eg
, cpd2kegg
etc the auxillary molecular ID mappers,
pathview
the main function,
#continuous compound data
cpd.data.c=sim.mol.data(mol.type="cpd", nmol=3000)
#discrete compound data
cpd.data.d=sim.mol.data(mol.type="cpd", nmol=3000, discrete=TRUE)
head(cpd.data.c)
head(cpd.data.d)
#continuous compound data named with "CAS Registry Number"
cpd.cas <- sim.mol.data(mol.type = "cpd", id.type = "CAS Registry Number", nmol = 10000)
#gene data with two samples
gene.data.2=sim.mol.data(mol.type="gene", nmol=1000, nexp=2)
head(gene.data.2)
#KEGG ortholog gene data
ko.data=sim.mol.data(mol.type="gene.ko", nmol=5000)
Run the code above in your browser using DataLab