## Import sample data from package
motive_data <-
read_motive_csv(system.file("extdata", "pathviewr_motive_example_data.csv",
package = 'pathviewr'))
flydra_data <-
read_flydra_mat(system.file("extdata", "pathviewr_flydra_example_data.mat",
package = 'pathviewr'),
subject_name = "birdie_sanders")
## Process data up to and including get_vis_angle()
motive_data_full <-
motive_data %>%
relabel_viewr_axes() %>%
gather_tunnel_data() %>%
trim_tunnel_outliers() %>%
rotate_tunnel() %>%
select_x_percent(desired_percent = 50) %>%
separate_trajectories(max_frame_gap = "autodetect") %>%
get_full_trajectories(span = 0.95) %>%
insert_treatments(tunnel_config = "v",
perch_2_vertex = 0.4,
vertex_angle = 90,
tunnel_length = 2,
stim_param_lat_pos = 0.1,
stim_param_lat_neg = 0.1,
stim_param_end_pos = 0.3,
stim_param_end_neg = 0.3,
treatment = "lat10_end_30") %>%
calc_min_dist_v(simplify_output = TRUE) %>%
get_vis_angle() %>%
## Now calculate the spatial frequencies
get_sf()
flydra_data_full <-
flydra_data %>%
redefine_tunnel_center(length_method = "middle",
height_method = "user-defined",
height_zero = 1.44) %>%
select_x_percent(desired_percent = 50) %>%
separate_trajectories(max_frame_gap = "autodetect") %>%
get_full_trajectories(span = 0.95) %>%
insert_treatments(tunnel_config = "box",
tunnel_length = 3,
tunnel_width = 1,
stim_param_lat_pos = 0.1,
stim_param_lat_neg = 0.1,
stim_param_end_pos = 0.3,
stim_param_end_neg = 0.3,
treatment = "lat10_end_30") %>%
calc_min_dist_box() %>%
get_vis_angle() %>%
## Now calculate the spatial frequencies
get_sf()
Run the code above in your browser using DataLab