Learn R Programming

patterncausality (version 0.1.3)

optimalParametersSearch: Optimal Parameters Search for Causality Analysis

Description

Searches for the optimal embedding dimension (E) and time delay (tau) to maximize the accuracy of causality predictions in a dataset. It evaluates each combination of E and tau for their ability to predict different types of causality: total, positive, negative, and dark.

Usage

optimalParametersSearch(Emax, tauMax, metric, dataset)

Value

A data frame summarizing the causality analysis results across all tested E and tau values, showing the mean total, positive, negative, and dark causality accuracies for each parameter combination.

Arguments

Emax

The maximum embedding dimension to test.

tauMax

The maximum time delay to test.

metric

The distance metric to use in the causality analysis (e.g., 'euclidean').

dataset

A matrix where each column represents a time series to be analyzed.

Examples

Run this code
data(climate_indices)
dataset <- climate_indices[, -1]
# \donttest{
optimalParams <- optimalParametersSearch(Emax=3, tauMax=3, metric="euclidean", dataset=dataset)
print(optimalParams)
# }

Run the code above in your browser using DataLab