vismodel(rspecdata, qcatch = c("Qi", "fi"), visual = c("avg.uv", "avg.v", "bluetit", "star", "pfowl"), achromatic = c("bt.dc", "ch.dc", "st.dc", "ml", "none"), illum = c("ideal", "bluesky", "D65", "forestshade"), vonkries = F, scale = 1, bkg = "ideal", relative = TRUE)
rspec
that has wavelength range in the first column, named 'wl', and spectral measurements in the
remaining columns.Qi
: Quantum catch for each photoreceptor
fi
: Quantum catch according to Fechner law (the signal of the receptor
channel is proportional to the logarithm of the quantum catch)
sensmodel
, containing
sensitivity for the user-defined visual system. The data frame must contain a 'wl'
column with the range of wavelengths included, and the sensitivity for each other
cone as a column
avg.uv
: average avian UV system
avg.v
: average avian V system
bluetit
: Blue tit Cyanistes caeruleus visual system
star
: Starling Sturnus vulgaris visual system
pfowl
: Peafowl Pavo cristatus visual system
bt.dc
: Blue tit Cyanistes caeruleus double cone
ch.dc
: Chicken Gallus gallus double cone
st.dc
: Starling Sturnus vulgaris double cone
ml
: sum of the two longest-wavelength cones
none
ideal
: homogeneous illuminance of 1 accross wavelengths (default)
'bluesky'
'D65'
: standard daylight
'forestshade'
FALSE
)vonkries=TRUE
this transformation has no effect.TRUE
).vismodel
containing the photon catches for each of the
photoreceptors considered. Information on the parameters used in the calculation are also
stored and can be called using the summary.vismodel
function.
Hart, N. S. (2001). The visual ecology of avian photoreceptors. Progress In Retinal And Eye Research, 20(5), 675-703.
Stoddard, M. C., & Prum, R. O. (2008). Evolution of avian plumage color in a tetrahedral color space: A phylogenetic analysis of new world buntings. The American Naturalist, 171(6), 755-776.
Endler, J. A., & Mielke, P. (2005). Comparing entire colour patterns as birds see them. Biological Journal Of The Linnean Society, 86(4), 405-431.
## Not run:
# data(sicalis)
# vis.sicalis <- vismodel(sicalis, visual='avg.uv')
# tcs.sicalis <- tcs(vis.sicalis)## End(Not run)
Run the code above in your browser using DataLab