Amazon Lookout for Equipment is a machine learning service that uses advanced analytics to identify anomalies in machines from sensor data for use in predictive maintenance.
lookoutequipment(config = list())
A client for the service. You can call the service's operations using
syntax like svc$operation(...)
, where svc
is the name you've assigned
to the client. The available operations are listed in the
Operations section.
Optional configuration of credentials, endpoint, and/or region.
access_key_id: AWS access key ID
secret_access_key: AWS secret access key
session_token: AWS temporary session token
profile: The name of a profile to use. If not given, then the default profile is used.
anonymous: Set anonymous credentials.
endpoint: The complete URL to use for the constructed client.
region: The AWS Region used in instantiating the client.
close_connection: Immediately close all HTTP connections.
timeout: The time in seconds till a timeout exception is thrown when attempting to make a connection. The default is 60 seconds.
s3_force_path_style: Set this to true
to force the request to use path-style addressing, i.e., http://s3.amazonaws.com/BUCKET/KEY
.
svc <- lookoutequipment(
config = list(
credentials = list(
creds = list(
access_key_id = "string",
secret_access_key = "string",
session_token = "string"
),
profile = "string",
anonymous = "logical"
),
endpoint = "string",
region = "string",
close_connection = "logical",
timeout = "numeric",
s3_force_path_style = "logical"
)
)
create_dataset | Creates a container for a collection of data being ingested for analysis |
create_inference_scheduler | Creates a scheduled inference |
create_label | Creates a label for an event |
create_label_group | Creates a group of labels |
create_model | Creates an ML model for data inference |
delete_dataset | Deletes a dataset and associated artifacts |
delete_inference_scheduler | Deletes an inference scheduler that has been set up |
delete_label | Deletes a label |
delete_label_group | Deletes a group of labels |
delete_model | Deletes an ML model currently available for Amazon Lookout for Equipment |
describe_data_ingestion_job | Provides information on a specific data ingestion job such as creation time, dataset ARN, and status |
describe_dataset | Provides a JSON description of the data in each time series dataset, including names, column names, and data types |
describe_inference_scheduler | Specifies information about the inference scheduler being used, including name, model, status, and associated metadata |
describe_label | Returns the name of the label |
describe_label_group | Returns information about the label group |
describe_model | Provides a JSON containing the overall information about a specific ML model, including model name and ARN, dataset, training and evaluation information, status, and so on |
list_data_ingestion_jobs | Provides a list of all data ingestion jobs, including dataset name and ARN, S3 location of the input data, status, and so on |
list_datasets | Lists all datasets currently available in your account, filtering on the dataset name |
list_inference_events | Lists all inference events that have been found for the specified inference scheduler |
list_inference_executions | Lists all inference executions that have been performed by the specified inference scheduler |
list_inference_schedulers | Retrieves a list of all inference schedulers currently available for your account |
list_label_groups | Returns a list of the label groups |
list_labels | Provides a list of labels |
list_models | Generates a list of all models in the account, including model name and ARN, dataset, and status |
list_sensor_statistics | Lists statistics about the data collected for each of the sensors that have been successfully ingested in the particular dataset |
list_tags_for_resource | Lists all the tags for a specified resource, including key and value |
start_data_ingestion_job | Starts a data ingestion job |
start_inference_scheduler | Starts an inference scheduler |
stop_inference_scheduler | Stops an inference scheduler |
tag_resource | Associates a given tag to a resource in your account |
untag_resource | Removes a specific tag from a given resource |
update_inference_scheduler | Updates an inference scheduler |
update_label_group | Updates the label group |
if (FALSE) {
svc <- lookoutequipment()
svc$create_dataset(
Foo = 123
)
}
Run the code above in your browser using DataLab