# NOT RUN {
###################
## First Example ##
## A highly artificial example with not enough subjects to be run;
## however, it demonstrates how to put data in it.
## We have two cnvs here, cnv1 and cnv2.
## The data is just completely random.
set.seed(13)
x <- data.frame( pid = c(1,1,1,1,1),
id = c(1,2,3,4,5),
idfath = c(4,4,4,0,0),
idmoth = c(5,5,5,0,0),
sex = c(1,2,1,1,2),
AffectionStatus = c(1,0,0,1,0),
cnv1.1 = runif(5),
cnv1.2 = runif(5),
cnv1.3 = runif(5),
cnv2.1 = runif(5),
cnv2.2 = runif(5),
cnv2.3 = runif(5) )
x
myCPed <- as.cped( x ) # Mark it with the class 'cped'
myCPed
# }
# NOT RUN {
####################
## Second Example ##
## Again, a completely random dataset.
## Here we go through an analysis of it.
## However, see pbat.m for many more details on all of the options.
## Create a completely random dataset with one cnv.
set.seed(13)
NUMTRIOS <- 500
## The data is completely random, it does not really make any sense.
cped <- as.cped( data.frame( pid = kronecker( 1:NUMTRIOS, rep(1,3) ),
id = rep( 1:3, NUMTRIOS ),
idfath = rep( c(0,0,1), NUMTRIOS ),
idmoth = rep( c(0,0,2), NUMTRIOS ),
sex = rep( c(2,1,1), NUMTRIOS ),
AffectionStatus = rep( c(0,0,2), NUMTRIOS ),
cnv1.1 = runif( 3*NUMTRIOS ),
cnv1.2 = runif( 3*NUMTRIOS ),
cnv1.3 = runif( 3*NUMTRIOS ) ) )
## Print out part of the dataset
print( head( cped ) )
## Command line run
pbat.work() ## Makes the intermediate files go in ./pbatRwork directory
## - Analyzing the first intensity
res1 <- pbat.m( AffectionStatus ~ NONE, ped=cped, phe=NULL, fbat="gee",
cnv.intensity=1, cnv.intensity.num=3, offset="none" )
pbat.clean( res1, all.output=TRUE ) ## Removes all intermediate files
## - Analyzing the second intensity
res2 <- pbat.m( AffectionStatus ~ NONE, ped=cped, phe=NULL, fbat="gee",
cnv.intensity=2, cnv.intensity.num=3, offset="none" )
pbat.clean( res2, all.output=TRUE )
## - Analyzing the third intensity
res3 <- pbat.m( AffectionStatus ~ NONE, ped=cped, phe=NULL, fbat="gee",
cnv.intensity=3, cnv.intensity.num=3, offset="none" )
pbat.clean( res3, all.output=TRUE )
pbat.unwork() ## Close up work (head to original working directory)
## Print all of the results
print( res1$results )
print( res2$results )
print( res3$results )
## Or put all the results together and write to file
res1$results <- rbind( res1$results, res2$results, res3$results )
write.pbat( res1, "cpedResults.csv" )
## Otherwise, we could write the data to disk, and run with the GUI interface
## Write the data to disk:
write.cped( "cped.cped", cped )
# }
Run the code above in your browser using DataLab