Learn R Programming

pbcmc (version 1.0.0)

parameters: Accessors for MolecularPermutationClassifier child class slots

Description

Slot setters/getters for MolecularPermutationClassifier hierarchy classes

Usage

parameters(object)
"parameters"(object)
parameters(object) <- value
"parameters"(object) <- value
"exprs"(object)
"exprs"(object) <- value
"annotation"(object, ...)
"annotation"(object) <- value
targets(object)
"targets"(object)
targets(object) <- value
"targets"(object) <- value
classification(object)
"classification"(object)
permutation(object)
"permutation"(object)

Arguments

object
MolecularPermutationClassifier subclass object
value
according to the function call:
  • parameters: named list with at least the following fields:
    $nPerm
    integer with number of permutations. Default: 1e4L

    $where
    character with significant value used. Default value is "fdr".
    $pCutoff
    numeric with p-value or fdr cutoff used, i.e., variable
    $corCutoff
    numeric with correlation difference between classes cutoff used, i.e., $|\rho(profile,class_A)-\rho(profile,class_B)|>corCutoff$

    $keep
    should null distribution simulation values be kept?. Default: FALSE

  • annotation: data.frame with individual annotations (genes, etc). Minimal compulsory fields are:
    $probe
    same characters as in row.names(M).

    $EntrezGene.ID
    integer with NCBI Entrez Data Base.
    $NCBI.gene.symbol
    character with gene mnemonic, a.k.a. gene symbol.

  • exprs: matrix with gene exprs profile, where genes are in rows and subjects as columns, a.k.a., M matrix.
  • targets: data.frame with additional subject data.
...
additional parameters according to function call.

Value

according to function call one of the following objects:
parameters
named list see value parameter
exprs
matrix with gene exprs profile, where genes are in rows and subjects as columns, a.k.a., M matrix.
annotation
data.frame see value parameter
classification
named list with at least the following fields:
$class
factor with with all possible class levels.
permutation
named list with at least the following fields:
pvalues
numeric matrix with subjects in row and classes in columns.
$fdr
numeric matrix with False Discovery Rate correction of pvalues by row.
parameters<-
MolecularPermutationClassifier object with parameters updated slot.
exprs<-
MolecularPermutationClassifier object with exprs updated slot.
annotation<-
MolecularPermutationClassifier object with annotation updated slot.
targets<-
MolecularPermutationClassifier object with targets updated slot.

See Also

PAM50 for a complete example.

Other MolecularPermutationClassifier: MolecularPermutationClassifier-class, show

Examples

Run this code
##Using pam50centroids package example data
data(pam50centroids)

##Now we can inspect pam50centroids object   
head(exprs(pam50centroids))      ##The gene expression
head(annotation(pam50centroids)) ##The available annotation 
head(targets(pam50centroids))    ##The clinical data present in the package  

##Work with the parameters 
parameters(pam50centroids)       ##Display them
aux<-parameters(pam50centroids)    
aux$keep<-TRUE                   ##Set keep to FALSE  
parameters(pam50centroids)<-aux
parameters(pam50centroids)        

##Also exprs<-, annotation<- and targets<- available functions to update    
##the respective slots  

Run the code above in your browser using DataLab