#NOT RUN
## Example 1
#The Dale's model
data(ulcer)
m1 <- pblm(fo1=cbind(pain,medication)~1, fo12=~I(operation=="vh"), RC.fo=~Col,
data=ulcer, weights=freq, contrasts=list(Col="contr.SAS"))
summary(m1)
deviance(m1)
predict(m1,type="response")
#the same data but in another format
#compare with Dale (1986), Table 3
dat <- multicolumn(freq~medication+pain+operation,data=ulcer)
fo <- as.formula(paste(attributes(dat)$"resp","~1",sep=""))
m1bis <- pblm(fo1=fo, fo12=~I(operation=="vh"), RC.fo=~Col, verbose=TRUE,
data=dat, ncat1=3, contrasts=list(Col="contr.SAS"))
deviance(m1bis)
chisq.test.pblm(m1bis)
Rsq.pblm(m1bis)
# Example 2. An artificial data set:
set.seed(10)
da <- expand.grid("Y1"=1:3,"Y2"=1:3,"fat1"=0:4,"fat2"=0:1)
da$Freq <- sample(1:20,3*3*5*2,replace=TRUE)
da$x1 <- rnorm(90)
#the bivariate additive proportional-odds model
m2 <- pblm(fo1=cbind(Y1,Y2) ~ fat1 + pb(x1), data=da, weights=Freq)
summary(m2)
Run the code above in your browser using DataLab