Learn R Programming

pcIRT (version 0.1)

CRSM: Estimation of Continuous Rating Scale Model (Mueller, 1987)

Description

Estimation of the Rating Scale Model for continuous data by Mueller (1987).

$$P_{vi}(a \leq X \leq b) = \frac{\int_a^b exp[x \mu + x(2c-x) \theta] dx}{\int_{c-\frac{d}{2}}^{c+\frac{d}{2}} exp[t \mu + t(2c-t) \theta] dt}$$

Parameters are estimated by a pairwise algorithm.

Usage

CRSM(data, start, min, max)

## S3 method for class 'CRSM': summary(object, \dots) ## S3 method for class 'CRSM': print(x, \dots)

Arguments

data
Data matrix or data frame; rows represent observations (persons), columns represent the items.
start
Starting values for parameter estimation. If missing, a vector of 0 is used as starting values.
min
The minimum value of the response scale (on which the data are based).
max
The maximum value of the response scale (on which the data are based).
object
object of class CRSM
x
{object of class CRSM}
...
...

Value

  • datadata matrix according to the input
  • data_pdata matrix with data transformed to a response interval between 0 and 1
  • itemparestimated item parameters
  • itempar_se_lowestimated lower boundary for standard errors of estimated item parameters
  • itempar_se_upestimated upper boundary for standard errors of estimated item parameters
  • itempar_seestimated mean standard errors of estimated item parameters
  • distrparestimated distribution parameter
  • distrpar_se_lowestimated lower boundary for standard errors of estimated distribution parameter
  • distrpar_se_upestimated upper boundary for standard errors of estimated distribution parameter
  • itempar_seestimated mean standard errors of estimated distribution parameter
  • iterationsNumber of Newton-Raphson iterations for each item pair
  • callcall of the CRSM function

Details

The parameters of the Continuous Rating Scale Model are estimated by a pairwise algorithm (the algorithm is described in detail in Mueller, 1999) using Newton-Raphson iterations for optimizing. For the pairwise algorithm no assumption on the person parameter distribution is necessary.

References

Mueller, H. (1987). A Rasch model for continuous ratings. Psychometrika, 52, 165-181.

Mueller, H. (1999). Probabilistische Testmodelle fuer diskrete und kontinuierliche Ratingskalen. [Probabilistic models for discrete and continuous rating scales]. Bern: Huber.

Examples

Run this code
#estimate CRSM item parameters
data(example1)
res_crsm <- CRSM(example1, min=0, max=1)

summary(res_crsm)

Run the code above in your browser using DataLab