Learn R Programming

pcaExplorer (version 1.0.2)

plotPCcorrs: Plot significance of (cor)relations of covariates VS principal components

Description

Plots the significance of the (cor)relation of each covariate vs a principal component

Usage

plotPCcorrs(pccorrs, pc = 1, logp = TRUE)

Arguments

pccorrs
A data.frame object generated by correlatePCs
pc
An integer number, corresponding to the principal component of interest
logp
Logical, defaults to TRUE, displays the -log10 of the pvalue instead of the p value itself

Value

  • A base plot object

Examples

Run this code
library(DESeq2)
dds <- makeExampleDESeqDataSet_multifac(betaSD_condition = 3,betaSD_tissue = 1)
rlt <- rlogTransformation(dds)
pcaobj <- prcomp(t(assay(rlt)))
res <- correlatePCs(pcaobj,colData(dds))
plotPCcorrs(res)

Run the code above in your browser using DataLab