Learn R Programming

pcaExplorer (version 1.0.2)

topGOtable: Extract functional terms enriched in the DE genes, based on topGO

Description

A wrapper for extracting functional GO terms enriched in the DE genes, based on the algorithm and the implementation in the topGO package

Usage

topGOtable(DEgenes, BGgenes, ontology = "BP", annot = annFUN.org,
  mapping = "org.Mm.eg.db", geneID = "symbol", topTablerows = 200,
  fullNamesInRows = TRUE, addGeneToTerms = TRUE, plotGraph = FALSE,
  plotNodes = 10, writeOutput = FALSE, outputFile = "")

Arguments

DEgenes
A vector of (differentially expressed) genes
BGgenes
A vector of background genes, e.g. all (expressed) genes in the assays
ontology
Which Gene Ontology domain to analyze: BP (Biological Process), MF (Molecular Function), or CC (Cellular Component)
annot
Which function to use for annotating genes to GO terms. Defaults to annFUN.org
mapping
Which org.XX.eg.db to use for annotation - select according to the species
geneID
Which format the genes are provided. Defaults to symbol, could also be entrez or ENSEMBL
topTablerows
How many rows to report before any filtering
fullNamesInRows
Logical, whether to display or not the full names for the GO terms
addGeneToTerms
Logical, whether to add a column with all genes annotated to each GO term
plotGraph
Logical, if TRUE additionally plots a graph on the identified GO terms
plotNodes
Number of nodes to plot
writeOutput
Logical, if TRUE additionally writes out the result to a file
outputFile
Name of the file the result should be written into

Value

  • A table containing the computed GO Terms and related enrichment scores

Examples

Run this code
library(airway)
library(DESeq2)
data(airway)
airway
dds_airway <- DESeqDataSet(airway, design= ~ cell + dex)

# Example, performing extraction of enriched functional categories in
# detected significantly expressed genes

dds_airway <- DESeq(dds_airway)
res_airway <- results(dds_airway)
library("AnnotationDbi")
library("org.Hs.eg.db")
res_airway$symbol <- mapIds(org.Hs.eg.db,
                            keys=row.names(res_airway),
                            column="SYMBOL",
                            keytype="ENSEMBL",
                            multiVals="first")
res_airway$entrez <- mapIds(org.Hs.eg.db,
                            keys=row.names(res_airway),
                            column="ENTREZID",
                            keytype="ENSEMBL",
                            multiVals="first")
resOrdered <- as.data.frame(res_airway[order(res_airway$padj),])
de_df <- resOrdered[resOrdered$padj < .05 & !is.na(resOrdered$padj),]
de_symbols <- de_df$symbol
bg_ids <- rownames(dds_airway)[rowSums(counts(dds_airway)) > 0]
bg_symbols <- mapIds(org.Hs.eg.db,
                     keys=bg_ids,
                     column="SYMBOL",
                     keytype="ENSEMBL",
                     multiVals="first")
library(topGO)

topgoDE_airway <- topGOtable(de_symbols, bg_symbols,
                             ontology = "BP",
                             mapping = "org.Hs.eg.db",
                             geneID = "symbol")

Run the code above in your browser using DataLab