p <- 10
## generate and draw random DAG :
myDAG <- randomDAG(p, prob = 0.2)
## generate 10000 samples of DAG using gaussian distribution
n <- 10000
d.mat <- rmvDAG(n, myDAG, errDist = "normal")
## estimate skeleton
indepTest <- gaussCItest
suffStat <- list(C = cor(d.mat), n = n)
alpha <- 0.01
skel <- skeleton(suffStat, indepTest, p, alpha)
## prepare input for pdsep
sepset <- skel@sepset
pMax <- skel@pMax
n.edgetestsSKEL <- skel@n.edgetests
max.ordSKEL <- skel@max.ord
## call pdsep to find possible d-sep and enhance the skeleton
pdsepRes <- pdsep(skel@graph, suffStat, indepTest, p, sepset, pMax, NAdelete,
verbose = TRUE, alpha)
Run the code above in your browser using DataLab