fciPlus(suffStat, indepTest, alpha, labels, p)
list
containing all necessary elements for the conditional independence
decisions in the function indepTest
.function
for testing conditional
independence. The function is internally called as
indepTest(x,y, S, suffStat)
, and tests conditional independence
of x
and y
character
vector of variable (or
p
.labels
are not, in which case labels
is set to
1:p
.class
fciAlgo
(see
fciAlgo
) containing the estimated graph
(in the form of an adjacency matrix with various possible edge marks),
the conditioning sets that lead to edge removals (sepset) and several other
parameters.fci
.fci
for estimating a PAG using the FCI algorithm.##################################################
## Example without latent variables
##################################################
set.seed(42)
p <- 7
## generate and draw random DAG :
myDAG <- randomDAG(p, prob = 0.4)
## find skeleton and PAG using the FCI algorithm
suffStat <- list(C = cov2cor(trueCov(myDAG)), n = 10^9)
res <- fciPlus(suffStat, indepTest=gaussCItest,
alpha = 0.9999, p=p)
Run the code above in your browser using DataLab