The data set is identical
to the one generated by
set.seed(40)
p <- 8
n <- 5000
gGtrue <- randomDAG(p, prob = 0.3)
pardag <- as(gGtrue, "GaussParDAG")
pardag$set.err.var(rep(1, p))
targets <- list(integer(0), 3, 5)
target.index <- c(rep(1, 0.6*n), rep(2, n/5), rep(3, n/5)) x1 <- rmvnorm.ivent(0.6*n, pardag)
x2 <- rmvnorm.ivent(n/5, pardag, targets[[2]],
matrix(rnorm(n/5, mean = 4, sd = 0.02), ncol = 1))
x3 <- rmvnorm.ivent(n/5, pardag, targets[[3]],
matrix(rnorm(n/5, mean = 4, sd = 0.02), ncol = 1))
gmInt <- list(x = rbind(x1, x2, x3),
targets = targets,
target.index = target.index,
g = gGtrue)