Learn R Programming

pcalg (version 2.4-3)

pcAlgo-class: Class "pcAlgo" of PC Algorithm Results, incl. Skeleton

Description

This class of objects is returned by the functions skeleton and pc to represent the (skeleton) of an estimated CPDAG. Objects of this class have methods for the functions plot, show and summary.

Usage

"plot"(x, y, main = NULL, zvalue.lwd = FALSE, lwd.max = 7, labels = NULL, ...) "print"(x, amat = FALSE, zero.print = ".", ...)
"summary"(object, amat = TRUE, zero.print = ".", ...) "show"(object)

Arguments

x, object
a "pcAlgo" object.
y
(generic plot() argument; unused).
main
main title for the plot (with an automatic default).
zvalue.lwd
logical indicating if the line width (lwd) of the edges should be made proportional to the entries of matrix zMin (originally) or derived from matrix pMax.
lwd.max
maximal lwd to be used, if zvalue.lwd is true.
labels
if non-NULL, these are used to define node attributes nodeAttrs and attrs, passed to agopen() from package Rgraphviz.
amat
logical indicating if the adjacency matrix should be shown (printed) as well.
zero.print
string for printing 0 (‘zero’) entries in the adjacency matrix.
...
optional further arguments (passed from and to methods).

Creation of objects

Objects are typically created as result from skeleton() or pc(), but could be be created by calls of the form new("pcAlgo", ...).

Slots

The slots call, n, max.ord, n.edgetests, sepset, and pMax are inherited from class "gAlgo", see there. In addition, "pcAlgo" has slots

Extends

Class "gAlgo".

Methods

See Also

pc, skeleton, fciAlgo

Examples

Run this code
  showClass("pcAlgo")

## generate a pcAlgo object
p <- 8
set.seed(45)
myDAG <- randomDAG(p, prob = 0.3)
n <- 10000
d.mat <- rmvDAG(n, myDAG, errDist = "normal")
suffStat <- list(C = cor(d.mat), n = n)
pc.fit <- pc(suffStat, indepTest = gaussCItest, alpha = 0.01, p = p)

## use methods of class pcAlgo
show(pc.fit)
if(require(Rgraphviz))
  plot(pc.fit)
summary(pc.fit)

## access slots of this object
(g  <- pc.fit@graph)
str(ss <- pc.fit@sepset, max=1)

Run the code above in your browser using DataLab