Learn R Programming

pcds (version 0.1.1)

IncMatPEtetra: Incidence matrix for Proportional Edge Proximity Catch Digraphs (PE-PCDs) - one tetrahedron case

Description

Returns the incidence matrix for the PE-PCD whose vertices are the given 3D numerical data set, dat, in the tetrahedron \(th=T(v=1,v=2,v=3,v=4)\).

PE proximity regions are constructed with respect to tetrahedron th with expansion parameter \(r \ge 1\) and vertex regions are based on the center M which is circumcenter ("CC") or center of mass ("CM") of th with default="CM". Loops are allowed, so the diagonal entries are all equal to 1.

See also (ceyhan:Phd-thesis,ceyhan:comp-geo-2010;textualpcds).

Usage

IncMatPEtetra(dat, th, r, M = "CM")

Arguments

dat

A set of 3D points which constitute the vertices of PE-PCD.

th

Four 3D points, stacked row-wise, each row representing a vertex of the tetrahedron.

r

A positive real number which serves as the expansion parameter in PE proximity region; must be \(\ge 1\).

M

The center to be used in the construction of the vertex regions in the tetrahedron, th. Currently it only takes "CC" for circumcenter and "CM" for center of mass; default="CM".

Value

Incidence matrix for the PE-PCD with vertices being 3D data set, dat, in the tetrahedron th with vertex regions based on circumcenter or center of mass

References

See Also

IncMatPEtri, IncMatPE1D, and IncMatPEMT

Examples

Run this code
# NOT RUN {
A<-c(0,0,0); B<-c(1,0,0); C<-c(1/2,sqrt(3)/2,0); D<-c(1/2,sqrt(3)/6,sqrt(6)/3)
tetra<-rbind(A,B,C,D)
n<-10

dat<-runif.tetra(n,tetra)$g  #try also dat<-c(.5,.5,.5)

M<-"CM"  #try also M<-"CC"
r<-1.5

IM<-IncMatPEtetra(dat,tetra,r=1.25)  #uses the default M="CM"
IM<-IncMatPEtetra(dat,tetra,r=1.25,M)
IM
dom.greedy(IM)
IndUBdom(IM,3)
dom.exact(IM)  #this might take a long time for large n

IncMatPEtetra(dat,tetra,r=1.5)
IncMatPEtetra(dat,tetra,r=2)

r<-2
IncMatPEtetra(dat,tetra,r,M)

dat.fr<-data.frame(a=dat)
IncMatPEtetra(dat.fr,tetra,r,M)

dat.fr<-data.frame(a=tetra)
IncMatPEtetra(dat,dat.fr,r,M)
# }
# NOT RUN {
# }

Run the code above in your browser using DataLab