S
being a dominating set or not for Central Similarity Proximity
Catch Digraphs (CS-PCDs) - standard equilateral triangle caseReturns S
a dominating set of the CS-PCDDt
), that is,
returns 1 if S
is a dominating set of CS-PCD, returns 0 otherwise.
CS proximity region is constructed
with respect to the standard equilateral triangle
Edges of
See also (ceyhan:mcap2012;textualpcds).
IndCSTe.domset(S, Dt, t, M = c(1, 1, 1))
A set of 2D points which is to be tested for being a dominating set for the CS-PCDs.
A set of 2D points which constitute the vertices of the CS-PCD.
A positive real number which serves as the expansion parameter in CS proximity region in the
standard equilateral triangle
A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates
which serves as a center in the interior of the standard equilateral triangle
S
a dominating set of the CS-PCDS
is a dominating set of CS-PCD,
returns 0 otherwise, where CS proximity region is constructed in the standard equilateral triangle
# NOT RUN {
A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
Te<-rbind(A,B,C);
n<-10
set.seed(1)
dat<-runifTe(n)$gen.points
M<-as.numeric(runifTe(1)$g) #try also M<-c(.6,.2)
t<-.5
S<-rbind(dat[1,],dat[2,])
IndCSTe.domset(S,dat,t,M)
S<-rbind(dat[1,],dat[2,],dat[3,],dat[5,])
IndCSTe.domset(S,dat,t,M)
S<-rbind(c(.1,.1),c(.3,.4),c(.5,.3))
IndCSTe.domset(S,dat,t,M)
IndCSTe.domset(c(.2,.5),dat,t,M)
IndCSTe.domset(c(.2,.5),c(.2,.5),t,M)
IndCSTe.domset(dat[5,],dat[2,],t,M)
S<-rbind(dat[1,],dat[2,],dat[3,],dat[5,],c(.2,.5))
IndCSTe.domset(S,dat[3,],t,M)
IndCSTe.domset(dat,dat,t,M)
P<-c(.4,.2)
S<-dat[c(1,3,4),]
IndCSTe.domset(dat,P,t,M)
IndCSTe.domset(S,P,t,M)
IndCSTe.domset(S,dat,t,M)
IndCSTe.domset(rbind(S,S),dat,t,M)
dat.fr<-data.frame(a=dat)
IndCSTe.domset(S,dat.fr,t,M)
# }
Run the code above in your browser using DataLab