Returns the number of arcs of Central Similarity Proximity Catch Digraphs (CS-PCDs) whose vertices are the
given 2D numerical data set, dat
.
CS proximity region tri
with expansion parameter tri
;
default is tri
.
For the number of arcs, loops are not allowed so
arcs are only possible for points inside tri
for this function.
See also (ceyhan:Phd-thesis,ceyhan:arc-density-CS,ceyhan:test2014;textualpcds).
NumArcsCStri(Dt, tri, t, M = c(1, 1, 1))
A set of 2D points which constitute the vertices of CS-PCD.
Three 2D points, stacked row-wise, each row representing a vertex of the triangle.
A positive real number which serves as the expansion parameter in CS proximity region.
A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates
which serves as a center in the interior of the triangle tri
; default is tri
.
Number of arcs for the CS-PCD with vertices being 2D data set, dat
, in tri
with expansion parameter, Dt
points inside tri
, i.e., arcs are possible for such points only.
# NOT RUN {
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
n<-10 #try also n<-20
set.seed(1)
dat<-runif.tri(n,Tr)$g
M<-as.numeric(runif.tri(1,Tr)$g) #try also M<-c(1.6,1.0)
NumArcsCStri(dat,Tr,t=.5,M)
NumArcsCStri(dat,Tr,t=1,M)
NumArcsCStri(dat,Tr,t=1.5,M)
NumArcsCStri(c(1.4,.2),Tr,t=.5,M)
t<-.5
NumArcsCStri(dat,Tr,t,M)
dat.fr<-data.frame(a=dat)
NumArcsCStri(dat.fr,Tr,t,M)
dat.fr<-data.frame(a=Tr)
NumArcsCStri(dat,dat.fr,t,M)
# }
Run the code above in your browser using DataLab