Learn R Programming

pcds (version 0.1.2)

PEdomtri: The domination number of Proportional Edge Proximity Catch Digraph (PE-PCD) - one triangle case

Description

Returns the domination number of PE-PCD whose vertices are the data points in Xp.

PE proximity region is defined with respect to the triangle tri with expansion parameter \(r \ge 1\) and vertex regions are constructed with center \(M=(m_1,m_2)\) in Cartesian coordinates or \(M=(\alpha,\beta,\gamma)\) in barycentric coordinates in the interior of the triangle tri or the circumcenter of tri.

See also (ceyhan:Phd-thesis,ceyhan:masa-2007,ceyhan:dom-num-NPE-Spat2011,ceyhan:mcap2012;textualpcds).

Usage

PEdomtri(Xp, tri, r, M = c(1, 1, 1))

Arguments

Xp

A set of 2D points which constitute the vertices of the digraph.

tri

Three 2D points, stacked row-wise, each row representing a vertex of the triangle.

r

A positive real number which serves as the expansion parameter in PE proximity region; must be \(\ge 1\).

M

A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates which serves as a center in the interior of the triangle tri or the circumcenter of tri, default is \((1,1,1)\) i.e., the center of mass.

Value

A list with two elements

dom.num

Domination number of PE-PCD with vertex set = Xp and expansion parameter \(r \ge 1\) and center M

mds

A minimum dominating set of PE-PCD with vertex set = Xp and expansion parameter \(r \ge 1\) and center M

References

See Also

PEdomMTnd, PEdomMT and PEdom1D

Examples

Run this code
# NOT RUN {
A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2)
Tr<-rbind(A,B,C)
n<-10  #try also n<-20
dat<-runif.tri(n,Tr)$g

M<-as.numeric(runif.tri(1,Tr)$g)  #try also M<-c(1,1,1)

r<-1.4

PEdomtri(dat,Tr,r,M)
IM<-IncMatPEtri(dat,Tr,r,M)
dom.greedy(IM)
dom.exact(IM)

gr.gam<-dom.greedy(IM)
gr.gam
dat[gr.gam$i,]

PEdomtri(rbind(dat,c(5,5)),Tr,r,M)

PEdomtri(dat,Tr,r,M=c(.4,.4))

PEdomtri(rbind(dat,c(5,5)),Tr,r,M=c(.4,.4))

P1<-c(.5,.5)
PEdomtri(P1,Tr,r,M)

# }

Run the code above in your browser using DataLab