The function PG2PE1D
and its auxiliary functions.
Returns \(P(\gamma=2)\) for PE-PCD whose vertices are a uniform data set of size n
in a finite interval
\((a,b)\) where \(\gamma\) stands for the domination number.
The PE proximity region \(N_{PE}(x,r,c)\) is defined with respect to \((a,b)\) with centrality parameter \(c \in (0,1)\) and expansion parameter \(r \ge 1\).
To compute the probability \(P(\gamma=2)\) for PE-PCD in the 1D case,
we partition the domain \((r,c)=(1,\infty) \times (0,1)\), and compute the probability for each partition
set. The sample size (i.e., number of vertices or data points) is a positive integer, n
.
PG2AI(r, c, n)PG2AII(r, c, n)
PG2AIII(r, c, n)
PG2AIV(r, c, n)
PG2A(r, c, n)
PG2Asym(r, c, n)
PG2BIII(r, c, n)
PG2B(r, c, n)
PG2Bsym(r, c, n)
PG2CIV(r, c, n)
PG2C(r, c, n)
PG2Csym(r, c, n)
PG2PE1D(r, c, n)
A positive real number which serves as the expansion parameter in PE proximity region; must be \(\ge 1\).
A positive real number in \((0,1)\) parameterizing the center inside int
\(=(a,b)\).
For the interval, int
\(=(a,b)\), the parameterized center is \(M_c=a+c(b-a)\).
A positive integer representing the size of the uniform data set.
\(P(\)domination number\(=2)\) for PE-PCD whose vertices are a uniform data set of size n
in a finite
interval \((a,b)\)
The auxiliary functions are PG2AI, PG2AII, PG2AIII, PG2AIV, PG2A, PG2Asym, PG2BIII, PG2B, PG2B,
PG2Bsym, PG2CIV, PG2C
, and PG2Csym
, each corresponding to a partition of the domain of
r
and c
. In particular, the domain partition is handled in 3 cases as
CASE A: \(c \in ((3-\sqrt{5})/2, 1/2)\)
CASE B: \(c \in (1/4,(3-\sqrt{5})/2)\) and
CASE C: \(c \in (0,1/4)\).
In Case A, we compute \(P(\gamma=2)\) with
PG2AIV(r,c,n)
if \(1 < r < (1-c)/c\);
PG2AIII(r,c,n)
if \((1-c)/c< r < 1/(1-c)\);
PG2AII(r,c,n)
if \(1/(1-c)< r < 1/c\);
and PG2AI(r,c,n)
otherwise.
PG2A(r,c,n)
combines these functions in Case A: \(c \in ((3-\sqrt{5})/2,1/2)\).
Due to the symmetry in the PE proximity regions, we use PG2Asym(r,c,n)
for \(c\) in
\((1/2,(\sqrt{5}-1)/2)\) with the same auxiliary functions
PG2AIV(r,1-c,n)
if \(1 < r < c/(1-c)\);
PG2AIII(r,1-c,n)
if \((c/(1-c) < r < 1/c\);
PG2AII(r,1-c,n)
if \(1/c < r < 1/(1-c)\);
and PG2AI(r,1-c,n)
otherwise.
In Case B, we compute \(P(\gamma=2)\) with
PG2AIV(r,c,n)
if \(1 < r < 1/(1-c)\);
PG2BIII(r,c,n)
if \(1/(1-c) < r < (1-c)/c\);
PG2AII(r,c,n)
if \((1-c)/c < r < 1/c\);
and PG2AI(r,c,n)
otherwise.
PG2B(r,c,n) combines these functions in Case B: \(c \in (1/4,(3-\sqrt{5})/2)\).
Due to the symmetry in the PE proximity regions, we use PG2Bsym(r,c,n)
for c
in
\(((\sqrt{5}-1)/2,3/4)\) with the same auxiliary functions
PG2AIV(r,1-c,n)
if \( 1< r < 1/c\);
PG2BIII(r,1-c,n)
if \(1/c < r < c/(1-c)\);
PG2AII(r,1-c,n)
if \(c/(1-c) < r < 1/(1-c)\);
and PG2AI(r,1-c,n)
otherwise.
In Case C, we compute \(P(\gamma=2)\) with
PG2AIV(r,c,n)
if \(1< r < 1/(1-c)\);
PG2BIII(r,c,n)
if \(1/(1-c) < r < (1-\sqrt{1-4 c})/(2 c)\);
PG2CIV(r,c,n)
if \((1-\sqrt{1-4 c})/(2 c) < r < (1+\sqrt{1-4 c})/(2 c)\);
PG2BIII(r,c,n)
if \((1+\sqrt{1-4 c})/(2 c) < r <1/(1-c)\);
PG2AII(r,c,n)
if \(1/(1-c) < r < 1/c\);
and PG2AI(r,c,n)
otherwise.
PG2C(r,c,n)
combines these functions in Case C: \(c \in (0,1/4)\).
Due to the symmetry in the PE proximity regions, we use PG2Csym(r,c,n)
for \(c \in (3/4,1)\)
with the same auxiliary functions
PG2AIV(r,1-c,n)
if \(1< r < 1/c\);
PG2BIII(r,1-c,n)
if \(1/c < r < (1-\sqrt{1-4(1-c)})/(2(1-c))\);
PG2CIV(r,1-c,n)
if \((1-\sqrt{1-4(1-c)})/(2(1-c)) < r < (1+\sqrt{1-4(1-c)})/(2(1-c))\);
PG2BIII(r,1-c,n)
if \((1+\sqrt{1-4(1-c)})/(2(1-c)) < r < c/(1-c)\);
PG2AII(r,1-c,n)
if \(c/(1-c)< r < 1/(1-c)\);
and PG2AI(r,1-c,n)
otherwise.
Combining Cases A, B, and C, we get our main function PG2PE1D
which computes \(P(\gamma=2)\)
for any (r,c
) in its domain.
PG2PEtri
and PG2PE1D.asy
# NOT RUN {
#Examples for the main function PG2PE1D
r<-2
c<-.5
n<-10
PG2PE1D(r,c,n)
PG2PE1D(r=1.5,c=1/1.5,n=100)
# }
Run the code above in your browser using DataLab