Learn R Programming

pcds (version 0.1.2)

rvTe.cent: The index of the vertex region in the standard equilateral triangle that contains a given point

Description

Returns the index of the vertex whose region contains point pt in standard equilateral triangle \(T_e=T((0,0),(1,0),(1/2,\sqrt{3}/2))\) with vertex regions are constructed with center \(M=(m_1,m_2)\) in Cartesian coordinates or \(M=(\alpha,\beta,\gamma)\) in barycentric coordinates in the interior of \(T_e\). (see the plots in the example for illustrations).

The vertices of triangle, \(T_e\), are labeled as \(1,2,3\) according to the row number the vertex is recorded in \(T_e\). If the point, pt, is not inside \(T_e\), then the function yields NA as output. The corresponding vertex region is the polygon with the vertex, M, and projections from M to the edges on the lines joining vertices and M.

See also (ceyhan:Phd-thesis,ceyhan:comp-geo-2010,ceyhan:mcap2012;textualpcds).

Usage

rvTe.cent(pt, M)

Arguments

pt

A 2D point for which M-vertex region it resides in is to be determined in the standard equilateral triangle \(T_e\).

M

A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates which serves as a center in the interior of the standard equilateral triangle \(T_e\).

Value

A list with two elements

rv

Index of the vertex whose region contains point, pt.

tri

The vertices of the triangle, \(T_e\), where row number corresponds to the vertex index in rv with row \(1=(0,0)\), row \(2=(1,0)\), and row \(3=(1/2,\sqrt{3}/2)\).

References

See Also

rvTeCM, rv.tri.cent, rv.triCC, rv.bastriCC, rv.triCM, and rv.bastri.cent

Examples

Run this code
# NOT RUN {
A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
Te<-rbind(A,B,C)
n<-10  #try also n<-20

set.seed(1)
dat<-runifTe(n)$gen.points

M<-as.numeric(runifTe(1)$g)  #try also M<-c(.6,.2)

rvTe.cent(dat[1,],M)
rvTe.cent(c(.7,.2),M)
rvTe.cent(c(0,1),M)

Rv<-vector()
for (i in 1:n)
  Rv<-c(Rv,rvTe.cent(dat[i,],M)$rv)
Rv

Ds<-cp2e.tri(Te,M)

Xlim<-range(Te[,1],dat[,1])
Ylim<-range(Te[,2],dat[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]

if (dimension(M)==3) {M<-bary2cart(M,Te)}
#need to run this when M is given in barycentric coordinates

plot(Te,asp=1,pch=".",xlab="",ylab="",axes=TRUE,
xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Te)
points(dat,pch=".",col=1)
L<-rbind(M,M,M); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty=2)

txt<-rbind(Te,M)
xc<-txt[,1]+c(-.02,.03,.02,0)
yc<-txt[,2]+c(.02,.02,.03,.05)
txt.str<-c("A","B","C","M")
text(xc,yc,txt.str)

text(dat,labels=factor(Rv))

rvTe.cent(c(.7,.2),M)

# }

Run the code above in your browser using DataLab