50% off | Unlimited Data & AI Learning

Last chance! 50% off unlimited learning

Sale ends in


pcds (version 0.1.4)

Gam3PEstdTetra: The indicator for three 3D points constituting a dominating set for Proportional Edge Proximity Catch Digraphs (PE-PCDs) - standard regular tetrahedron case

Description

Returns I({pt1,pt2,pt3} is a dominating set of the PE-PCD) where the vertices of the PE-PCD are the 3D data set Dt in the standard regular tetrahedron Th=T((0,0,0),(1,0,0),(1/2,3/2,0),(1/2,3/6,6/3)), that is, returns 1 if {pt1,pt2,pt3} is a dominating set of PE-PCD, returns 0 otherwise.

Point, pt1, is in the region of vertex rv1 (default is NULL), point, pt2, is in the region of vertex rv2 (default is NULL); point, pt3), is in the region of vertex rv3) (default is NULL); vertices (and hence rv1, rv2 and rv3) are labeled as 1,2,3,4 in the order they are stacked row-wise in Th.

PE proximity region is constructed with respect to the tetrahedron Th with expansion parameter r1 and vertex regions are based on center of mass CM (equivalent to circumcenter in this case).

ch.data.pnts is for checking whether points pt1, pt2 and pt3 are all data points in Dt or not (default is FALSE), so by default this function checks whether the points pt1, pt2 and pt3 would constitute a dominating set if they actually were all in the data set.

See also (ceyhan:Phd-thesis,ceyhan:comp-geo-2010;textualpcds).

Usage

Gam3PEstdTetra(
  pt1,
  pt2,
  pt3,
  Dt,
  r,
  rv1 = NULL,
  rv2 = NULL,
  rv3 = NULL,
  ch.data.pnts = FALSE
)

Value

I({pt1,pt2,pt3} is a dominating set of the PE-PCD) where the vertices of the PE-PCD are the 3D data set Dt), that is, returns 1 if {pt1,pt2,pt3} is a dominating set of PE-PCD, returns 0 otherwise

Arguments

pt1, pt2, pt3

Three 3D points to be tested for constituting a dominating set of the PE-PCD.

Dt

A set of 3D points which constitutes the vertices of the PE-PCD.

r

A positive real number which serves as the expansion parameter in PE proximity region; must be 1.

rv1, rv2, rv3

The indices of the vertices whose regions contains pt1, pt2 and pt3, respectively. They take the vertex labels as 1,2,3,4 as in the row order of the vertices in Th (default is NULL for all).

ch.data.pnts

A logical argument for checking whether points pt1 and pt2 are data points in Dt or not (default is FALSE).

Author

Elvan Ceyhan

References

See Also

Gam3PEtetra

Examples

Run this code
set.seed(123)
A<-c(0,0,0); B<-c(1,0,0); C<-c(1/2,sqrt(3)/2,0); D<-c(1/2,sqrt(3)/6,sqrt(6)/3)
tetra<-rbind(A,B,C,D)
n<-10 #try 20, 40, 100 (larger n may take a long time)
dat<-runif.stdtetra(n)$g  #try also dat<-cbind(runif(n),runif(n),runif(n))
r<-1.25

Gam3PEstdTetra(dat[1,],dat[2,],dat[3,],dat,r)

Gam3PEstdTetra(dat[1,],dat[2,],dat[2,],dat,r)

Gam3PEstdTetra(dat[1,],c(1,1,1),dat[3,],dat,r)

Gam3PEstdTetra(c(-1,1,1),c(1,1,1),c(1,1,-1),rbind(c(-1,1,1),c(1,1,1),c(1,1,-1)),r)

ind.gam3<-vector()
for (i in 1:(n-2))
 for (j in (i+1):(n-1))
   for (k in (j+1):n)
 {if (Gam3PEstdTetra(dat[i,],dat[j,],dat[k,],dat,r)==1)
  ind.gam3<-rbind(ind.gam3,c(i,j,k))}

ind.gam3

#or try
rv1<-rv.tetraCC(dat[1,],tetra)$rv; rv2<-rv.tetraCC(dat[2,],tetra)$rv;
rv3<-rv.tetraCC(dat[3,],tetra)$rv
Gam3PEstdTetra(dat[1,],dat[2,],dat[3,],dat,r,rv1,rv2,rv3)

#or try
rv1<-rv.tetraCC(dat[1,],tetra)$rv;
Gam3PEstdTetra(dat[1,],dat[2,],dat[3,],dat,r,rv1)

#or try
rv2<-rv.tetraCC(dat[2,],tetra)$rv
Gam3PEstdTetra(dat[1,],dat[2,],dat[3,],dat,r,rv2=rv2)

P1<-c(.1,.1,.1)
P2<-c(.3,.3,.3)
P3<-c(.4,.1,.2)
Gam3PEstdTetra(P1,P2,P3,dat,r)

dat.fr<-data.frame(a=dat)
Gam3PEstdTetra(P1,P2,P3,dat.fr,r)

Gam3PEstdTetra(dat[1,],c(1,1,1),dat[3,],dat,r,ch.data.pnts = FALSE)
#gives an error message if ch.data.pnts = TRUE since not all points are data points in Dt

Run the code above in your browser using DataLab