Learn R Programming

pcds (version 0.1.8)

IarcPEint: The indicator for the presence of an arc from a point to another for Proportional Edge Proximity Catch Digraphs (PE-PCDs) - one interval case

Description

Returns \(I(p_2 \in N_{PE}(p_1,r,c))\) for points \(p_1\) and \(p_2\), that is, returns 1 if \(p_2\) is in \(N_{PE}(p_1,r,c)\), returns 0 otherwise, where \(N_{PE}(x,r,c)\) is the PE proximity region for point \(x\) with expansion parameter \(r \ge 1\) and centrality parameter \(c \in (0,1)\).

PE proximity region is constructed with respect to the interval \((a,b)\). This function works whether \(p_1\) and \(p_2\) are inside or outside the interval int.

Vertex regions for middle intervals are based on the center associated with the centrality parameter \(c \in (0,1)\). If \(p_1\) and \(p_2\) are identical, then it returns 1 regardless of their locations (i.e., loops are allowed in the digraph).

See also (ceyhan:metrika-2012;textualpcds).

Usage

IarcPEint(p1, p2, int, r, c = 0.5)

Value

\(I(p_2 \in N_{PE}(p_1,r,c))\), that is, returns 1 if \(p_2\) in \(N_{PE}(p_1,r,c)\), returns 0 otherwise

Arguments

p1

A 1D point for which the proximity region is constructed.

p2

A 1D point for which it is checked whether it resides in the proximity region of \(p_1\) or not.

int

A vector of two real numbers representing an interval.

r

A positive real number which serves as the expansion parameter in PE proximity region must be \(\ge 1\).

c

A positive real number in \((0,1)\) parameterizing the center inside int\(=(a,b)\) with the default c=.5. For the interval, int\(=(a,b)\), the parameterized center is \(M_c=a+c(b-a)\).

Author

Elvan Ceyhan

References

See Also

IarcPEmid.int, IarcPEend.int and IarcCSint

Examples

Run this code
c<-.4
r<-2
a<-0; b<-10; int<-c(a,b)

IarcPEint(7,5,int,r,c)
IarcPEint(15,17,int,r,c)
IarcPEint(1,3,int,r,c)

Run the code above in your browser using DataLab