# \donttest{
c1<-.4; c2<-.6;
A<-c(0,0); B<-c(1,0); C<-c(c1,c2);
Tb<-rbind(A,B,C)
n<-10 #try also n<-20
set.seed(1)
Xp<-runif.basic.tri(n,c1,c2)$g
M<-as.numeric(runif.basic.tri(1,c1,c2)$g) #try also M<-c(.6,.3)
r<-2
P<-c(.4,.2)
Idom.num1PEbasic.tri(P,Xp,r,c1,c2,M)
Idom.num1PEbasic.tri(Xp[1,],Xp,r,c1,c2,M)
Idom.num1PEbasic.tri(c(1,1),Xp,r,c1,c2,M,ch.data.pnt = FALSE)
#gives an error message if ch.data.pnt = TRUE since point p=c(1,1) is not a data point in Xp
#or try
Rv<-rel.vert.basic.tri(Xp[1,],c1,c2,M)$rv
Idom.num1PEbasic.tri(Xp[1,],Xp,r,c1,c2,M,Rv)
gam.vec<-vector()
for (i in 1:n)
{gam.vec<-c(gam.vec,Idom.num1PEbasic.tri(Xp[i,],Xp,r,c1,c2,M))}
ind.gam1<-which(gam.vec==1)
ind.gam1
Xlim<-range(Tb[,1],Xp[,1])
Ylim<-range(Tb[,2],Xp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
if (dimension(M)==3) {M<-bary2cart(M,Tb)}
#need to run this when M is given in barycentric coordinates
if (identical(M,circumcenter.tri(Tb)))
{
plot(Tb,pch=".",asp=1,xlab="",ylab="",axes=TRUE,
xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tb)
points(Xp,pch=1,col=1)
Ds<-rbind((B+C)/2,(A+C)/2,(A+B)/2)
} else
{plot(Tb,pch=".",xlab="",ylab="",axes=TRUE,
xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tb)
points(Xp,pch=1,col=1)
Ds<-prj.cent2edges.basic.tri(c1,c2,M)}
L<-rbind(M,M,M); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty=2)
points(rbind(Xp[ind.gam1,]),pch=4,col=2)
txt<-rbind(Tb,M,Ds)
xc<-txt[,1]+c(-.02,.02,.02,-.02,.03,-.03,.01)
yc<-txt[,2]+c(.02,.02,.02,-.02,.02,.02,-.03)
txt.str<-c("A","B","C","M","D1","D2","D3")
text(xc,yc,txt.str)
Idom.num1PEbasic.tri(c(.2,.1),Xp,r,c1,c2,M,ch.data.pnt=FALSE)
#gives an error message if ch.data.pnt=TRUE since point p is not a data point in Xp
# }
Run the code above in your browser using DataLab