Learn R Programming

pcds (version 0.1.8)

NPEint: The end points of the Proportional Edge (PE) Proximity Region for a point - one interval case

Description

Returns the end points of the interval which constitutes the PE proximity region for a point in the interval int\(=(a,b)=\)(rv=1,rv=2). PE proximity region is constructed with respect to the interval int with expansion parameter \(r \ge 1\) and centrality parameter \(c \in (0,1)\).

Vertex regions are based on the (parameterized) center, \(M_c\), which is \(M_c=a+c(b-a)\) for the interval, int\(=(a,b)\). The PE proximity region is constructed whether x is inside or outside the interval int.

See also (ceyhan:metrika-2012;textualpcds).

Usage

NPEint(x, int, r, c = 0.5)

Value

The interval which constitutes the PE proximity region for the point x

Arguments

x

A 1D point for which PE proximity region is constructed.

int

A vector of two real numbers representing an interval.

r

A positive real number which serves as the expansion parameter in PE proximity region; must be \(\ge 1\).

c

A positive real number in \((0,1)\) parameterizing the center inside int\(=(a,b)\) with the default c=.5. For the interval, int\(=(a,b)\), the parameterized center is \(M_c=a+c(b-a)\).

Author

Elvan Ceyhan

References

See Also

NCSint, NPEtri and NPEtetra

Examples

Run this code
c<-.4
r<-2
a<-0; b<-10; int<-c(a,b)

NPEint(7,int,r,c)
NPEint(17,int,r,c)
NPEint(1,int,r,c)
NPEint(-1,int,r,c)

Run the code above in your browser using DataLab