Learn R Programming

pcds (version 0.1.8)

NPEstd.tetra: The vertices of the Proportional Edge (PE) Proximity Region in the standard regular tetrahedron

Description

Returns the vertices of the PE proximity region (which is itself a tetrahedron) for a point in the standard regular tetrahedron \(T_h=T((0,0,0),(1,0,0),(1/2,\sqrt{3}/2,0),(1/2,\sqrt{3}/6,\sqrt{6}/3))=\) (rv=1,rv=2,rv=3,rv=4).

PE proximity region is defined with respect to the tetrahedron \(T_h\) with expansion parameter \(r \ge 1\) and vertex regions based on the circumcenter of \(T_h\) (which is equivalent to the center of mass in the standard regular tetrahedron).

Vertex regions are labeled as 1,2,3,4 rowwise for the vertices of the tetrahedron \(T_h\). rv is the index of the vertex region p resides, with default=NULL. If p is outside of \(T_h\), it returns NULL for the proximity region.

See also (ceyhan:Phd-thesis,ceyhan:comp-geo-2010;textualpcds).

Usage

NPEstd.tetra(p, r, rv = NULL)

Value

Vertices of the tetrahedron which constitutes the PE proximity region with expansion parameter r and circumcenter (or center of mass) for a point p in the standard regular tetrahedron

Arguments

p

A 3D point whose PE proximity region is to be computed.

r

A positive real number which serves as the expansion parameter in PE proximity region; must be \(\ge 1\).

rv

Index of the vertex region containing the point, either 1,2,3,4 or NULL (default is NULL).

Author

Elvan Ceyhan

References

See Also

NPEtetra, NPEtri and NPEint

Examples

Run this code
# \donttest{
A<-c(0,0,0); B<-c(1,0,0); C<-c(1/2,sqrt(3)/2,0); D<-c(1/2,sqrt(3)/6,sqrt(6)/3)
tetra<-rbind(A,B,C,D)

n<-3
Xp<-runif.std.tetra(n)$g
r<-1.5
NPEstd.tetra(Xp[1,],r)

#or try
RV<-rel.vert.tetraCC(Xp[1,],tetra)$rv
NPEstd.tetra(Xp[1,],r,rv=RV)

NPEstd.tetra(c(-1,-1,-1),r,rv=NULL)
# }

Run the code above in your browser using DataLab