Learn R Programming

pcds (version 0.1.8)

Pdom.num2PE1Dasy: The asymptotic probability of domination number \(= 2\) for Proportional Edge Proximity Catch Digraphs (PE-PCDs) - middle interval case

Description

Returns the asymptotic \(P(\)domination number\(\le 1)\) for PE-PCD whose vertices are a uniform data set in a finite interval \((a,b)\).

The PE proximity region \(N_{PE}(x,r,c)\) is defined with respect to \((a,b)\) with centrality parameter c in \((0,1)\) and expansion parameter \(r=1/\max(c,1-c)\).

Usage

Pdom.num2PE1Dasy(c)

Value

The asymptotic \(P(\)domination number\(\le 1)\) for PE-PCD whose vertices are a uniform data set in a finite interval \((a,b)\)

Arguments

c

A positive real number in \((0,1)\) parameterizing the center inside int\(=(a,b)\). For the interval, \((a,b)\), the parameterized center is \(M_c=a+c(b-a)\).

Author

Elvan Ceyhan

See Also

Pdom.num2PE1D and Pdom.num2PEtri

Examples

Run this code
c<-.5

Pdom.num2PE1Dasy(c)

Pdom.num2PE1Dasy(c=1/1.5)
Pdom.num2PE1D(r=1.5,c=1/1.5,n=10)
Pdom.num2PE1D(r=1.5,c=1/1.5,n=100)

Run the code above in your browser using DataLab