Learn R Programming

pcds (version 0.1.8)

fr2vertsCCvert.reg.basic.tri: The furthest points from vertices in each \(CC\)-vertex region in a standard basic triangle

Description

An object of class "Extrema". Returns the furthest data points among the data set, Xp, in each \(CC\)-vertex region from the corresponding vertex in the standard basic triangle \(T_b=T(A=(0,0),B=(1,0),C=(c_1,c_2))\).

Any given triangle can be mapped to the standard basic triangle by a combination of rigid body motions (i.e., translation, rotation and reflection) and scaling, preserving uniformity of the points in the original triangle. Hence, standard basic triangle is useful for simulation studies under the uniformity hypothesis.

ch.all.intri is for checking whether all data points are inside \(T_b\) (default is FALSE).

See also (ceyhan:Phd-thesis,ceyhan:mcap2012;textualpcds).

Usage

fr2vertsCCvert.reg.basic.tri(Xp, c1, c2, ch.all.intri = FALSE)

Value

A list with the elements

txt1

Vertex labels are \(A=1\), \(B=2\), and \(C=3\) (correspond to row number in Extremum Points).

txt2

A short description of the distances as "Distances from furthest points to ...".

type

Type of the extrema points

desc

A short description of the extrema points

mtitle

The "main" title for the plot of the extrema

ext

The extrema points, here, furthest points from vertices in each vertex region.

X

The input data, Xp, can be a matrix or data frame

num.points

The number of data points, i.e., size of Xp

supp

Support of the data points, here, it is \(T_b\).

cent

The center point used for construction of edge regions.

ncent

Name of the center, cent, it is circumcenter "CC" for this function.

regions

Vertex regions inside the triangle, \(T_b\), provided as a list.

region.names

Names of the vertex regions as "vr=1", "vr=2", and "vr=3"

region.centers

Centers of mass of the vertex regions inside \(T_b\).

dist2ref

Distances from furthest points in each vertex region to the corresponding vertex.

Arguments

Xp

A set of 2D points.

c1, c2

Positive real numbers which constitute the vertex of the standard basic triangle. adjacent to the shorter edges; \(c_1\) must be in \([0,1/2]\), \(c_2>0\) and \((1-c_1)^2+c_2^2 \le 1\)

ch.all.intri

A logical argument for checking whether all data points are inside \(T_b\) (default is FALSE).

Author

Elvan Ceyhan

References

See Also

fr2vertsCCvert.reg, fr2edgesCMedge.reg.std.tri, and kfr2vertsCCvert.reg

Examples

Run this code
# \donttest{
c1<-.4; c2<-.6;
A<-c(0,0); B<-c(1,0); C<-c(c1,c2);
Tb<-rbind(A,B,C)
n<-20

set.seed(1)
Xp<-runif.basic.tri(n,c1,c2)$g

Ext<-fr2vertsCCvert.reg.basic.tri(Xp,c1,c2)
Ext
summary(Ext)
plot(Ext)

f2v<-Ext

CC<-circumcenter.basic.tri(c1,c2)  #the circumcenter
D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2;
Ds<-rbind(D1,D2,D3)

Xlim<-range(Tb[,1],Xp[,1])
Ylim<-range(Tb[,2],Xp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]

plot(A,pch=".",asp=1,xlab="",ylab="",
main="Furthest Points in CC-Vertex Regions \n from the Vertices",
xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tb)
L<-matrix(rep(CC,3),ncol=2,byrow=TRUE); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty=2)
points(Xp)
points(rbind(f2v$ext),pch=4,col=2)

txt<-rbind(Tb,CC,D1,D2,D3)
xc<-txt[,1]+c(-.03,.03,0.02,.07,.06,-.05,.01)
yc<-txt[,2]+c(.02,.02,.03,.01,.02,.02,-.04)
txt.str<-c("A","B","C","CC","D1","D2","D3")
text(xc,yc,txt.str)
# }

Run the code above in your browser using DataLab