Learn R Programming

pcds (version 0.1.8)

rel.vert.basic.tri: The index of the vertex region in a standard basic triangle form that contains a given point

Description

Returns the index of the related vertex in the standard basic triangle form whose region contains point p. The standard basic triangle form is \(T_b=T((0,0),(1,0),(c_1,c_2))\) where \(c_1\) is in \([0,1/2]\), \(c_2>0\) and \((1-c_1)^2+c_2^2 \le 1\)..

Vertex regions are based on the general center \(M=(m_1,m_2)\) in Cartesian coordinates or \(M=(\alpha,\beta,\gamma)\) in barycentric coordinates in the interior of the standard basic triangle form \(T_b\). Vertices of the standard basic triangle form \(T_b\) are labeled according to the row number the vertex is recorded, i.e., as 1=(0,0), 2=(1,0),and \(3=(c_1,c_2)\).

If the point, p, is not inside \(T_b\), then the function yields NA as output. The corresponding vertex region is the polygon with the vertex, M, and projections from M to the edges on the lines joining vertices and M. That is, rv=1 has vertices \((0,0),D_3,M,D_2\); rv=2 has vertices \((1,0),D_1,M,D_3\); and \(rv=3\) has vertices \((c_1,c_2),D_2,M,D_1\) (see the illustration in the examples).

Any given triangle can be mapped to the standard basic triangle form by a combination of rigid body motions (i.e., translation, rotation and reflection) and scaling, preserving uniformity of the points in the original triangle. Hence, standard basic triangle form is useful for simulation studies under the uniformity hypothesis.

See also (ceyhan:Phd-thesis,ceyhan:comp-geo-2010,ceyhan:mcap2012;textualpcds).

Usage

rel.vert.basic.tri(p, c1, c2, M)

Value

A list with two elements

rv

Index of the vertex whose region contains point, p; index of the vertex is the same as the row number in the standard basic triangle form, \(T_b\)

tri

The vertices of the standard basic triangle form, \(T_b\), where row number corresponds to the vertex index rv with rv=1 is row \(1=(0,0)\), rv=2 is row \(2=(1,0)\), and \(rv=3\) is row \(3=(c_1,c_2)\).

Arguments

p

A 2D point for which M-vertex region it resides in is to be determined in the standard basic triangle form \(T_b\).

c1, c2

Positive real numbers which constitute the vertex of the standard basic triangle form adjacent to the shorter edges; \(c_1\) must be in \([0,1/2]\), \(c_2>0\) and \((1-c_1)^2+c_2^2 \le 1\).

M

A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates which serves as a center in the interior of the standard basic triangle form.

Author

Elvan Ceyhan

References

See Also

rel.vert.basic.triCM, rel.vert.tri, rel.vert.triCC, rel.vert.basic.triCC, rel.vert.triCM, and rel.vert.std.triCM

Examples

Run this code
# \donttest{
c1<-.4; c2<-.6
A<-c(0,0); B<-c(1,0); C<-c(c1,c2);
Tb<-rbind(A,B,C);
M<-c(.6,.2)

P<-c(.4,.2)
rel.vert.basic.tri(P,c1,c2,M)

n<-20  #try also n<-40
set.seed(1)
Xp<-runif.basic.tri(n,c1,c2)$g

M<-as.numeric(runif.basic.tri(1,c1,c2)$g)  #try also M<-c(.6,.2)

Rv<-vector()
for (i in 1:n)
{ Rv<-c(Rv,rel.vert.basic.tri(Xp[i,],c1,c2,M)$rv)}
Rv

Ds<-prj.cent2edges.basic.tri(c1,c2,M)

Xlim<-range(Tb[,1],Xp[,1])
Ylim<-range(Tb[,2],Xp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]

if (dimension(M)==3) {M<-bary2cart(M,Tb)}
#need to run this when M is given in barycentric coordinates

plot(Tb,pch=".",xlab="",ylab="",axes=TRUE,
xlim=Xlim+xd*c(-.1,.1),ylim=Ylim+yd*c(-.05,.05))
polygon(Tb)
points(Xp,pch=".",col=1)
L<-rbind(M,M,M); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty = 2)

xc<-Tb[,1]+c(-.04,.05,.04)
yc<-Tb[,2]+c(.02,.02,.03)
txt.str<-c("rv=1","rv=2","rv=3")
text(xc,yc,txt.str)

txt<-rbind(M,Ds)
xc<-txt[,1]+c(-.02,.04,-.03,0)
yc<-txt[,2]+c(-.02,.02,.02,-.03)
txt.str<-c("M","D1","D2","D3")
text(xc,yc,txt.str)
text(Xp,labels=factor(Rv))
# }

Run the code above in your browser using DataLab